//#include "libc.h" //#include "atomic.h" //#include "pthread_impl.h" #include "shim.h" #if defined(__GNUC__) && defined(__PIC__) #define inline inline __attribute__((always_inline)) #endif struct chunk { size_t psize, csize; struct chunk *next, *prev; }; struct bin { volatile int lock[2]; struct chunk *head; struct chunk *tail; }; static struct { volatile uint64_t binmap; struct bin bins[64]; volatile int free_lock[2]; } mal; #define SIZE_ALIGN (4*sizeof(size_t)) #define SIZE_MASK (-SIZE_ALIGN) #define OVERHEAD (2*sizeof(size_t)) #define MMAP_THRESHOLD (0x1c00*SIZE_ALIGN) #define DONTCARE 16 #define RECLAIM 163840 #define CHUNK_SIZE(c) ((c)->csize & -2) #define CHUNK_PSIZE(c) ((c)->psize & -2) #define PREV_CHUNK(c) ((struct chunk *)((char *)(c) - CHUNK_PSIZE(c))) #define NEXT_CHUNK(c) ((struct chunk *)((char *)(c) + CHUNK_SIZE(c))) #define MEM_TO_CHUNK(p) (struct chunk *)((char *)(p) - OVERHEAD) #define CHUNK_TO_MEM(c) (void *)((char *)(c) + OVERHEAD) #define BIN_TO_CHUNK(i) (MEM_TO_CHUNK(&mal.bins[i].head)) #define C_INUSE ((size_t)1) #define IS_MMAPPED(c) !((c)->csize & (C_INUSE)) /* Synchronization tools */ static inline void lock(volatile int *lk) { #if 0 if (libc.threads_minus_1) while(a_swap(lk, 1)) __wait(lk, lk+1, 1, 1); #endif } static inline void unlock(volatile int *lk) { #if 0 if (lk[0]) { a_store(lk, 0); if (lk[1]) __wake(lk, 1, 1); } #endif } static inline void lock_bin(int i) { lock(mal.bins[i].lock); if (!mal.bins[i].head) mal.bins[i].head = mal.bins[i].tail = BIN_TO_CHUNK(i); } static inline void unlock_bin(int i) { unlock(mal.bins[i].lock); } static int first_set(uint64_t x) { #if 0 return a_ctz_64(x); #else static const char debruijn64[64] = { 0, 1, 2, 53, 3, 7, 54, 27, 4, 38, 41, 8, 34, 55, 48, 28, 62, 5, 39, 46, 44, 42, 22, 9, 24, 35, 59, 56, 49, 18, 29, 11, 63, 52, 6, 26, 37, 40, 33, 47, 61, 45, 43, 21, 23, 58, 17, 10, 51, 25, 36, 32, 60, 20, 57, 16, 50, 31, 19, 15, 30, 14, 13, 12 }; static const char debruijn32[32] = { 0, 1, 23, 2, 29, 24, 19, 3, 30, 27, 25, 11, 20, 8, 4, 13, 31, 22, 28, 18, 26, 10, 7, 12, 21, 17, 9, 6, 16, 5, 15, 14 }; if (sizeof(long) < 8) { uint32_t y = x; if (!y) { y = x>>32; return 32 + debruijn32[(y&-y)*0x076be629 >> 27]; } return debruijn32[(y&-y)*0x076be629 >> 27]; } return debruijn64[(x&-x)*0x022fdd63cc95386dull >> 58]; #endif } static int bin_index(size_t x) { x = x / SIZE_ALIGN - 1; if (x <= 32) return x; if (x > 0x1c00) return 63; return ((union { float v; uint32_t r; }){(int)x}.r>>21) - 496; } static int bin_index_up(size_t x) { x = x / SIZE_ALIGN - 1; if (x <= 32) return x; return (((union { float v; uint32_t r; }){(int)x}.r+0x1fffff)>>21) - 496; } #if 0 void __dump_heap(int x) { struct chunk *c; int i; for (c = (void *)mal.heap; CHUNK_SIZE(c); c = NEXT_CHUNK(c)) fprintf(stderr, "base %p size %zu (%d) flags %d/%d\n", c, CHUNK_SIZE(c), bin_index(CHUNK_SIZE(c)), c->csize & 15, NEXT_CHUNK(c)->psize & 15); for (i=0; i<64; i++) { if (mal.bins[i].head != BIN_TO_CHUNK(i) && mal.bins[i].head) { fprintf(stderr, "bin %d: %p\n", i, mal.bins[i].head); if (!(mal.binmap & 1ULL<psize = 0 | C_INUSE; } /* Record new heap end and fill in footer. */ end = (char *)p + n; w = MEM_TO_CHUNK(end); w->psize = n | C_INUSE; w->csize = 0 | C_INUSE; /* Fill in header, which may be new or may be replacing a * zero-size sentinel header at the old end-of-heap. */ w = MEM_TO_CHUNK(p); w->csize = n | C_INUSE; unlock(heap_lock); return w; } static int adjust_size(size_t *n) { /* Result of pointer difference must fit in ptrdiff_t. */ if (*n-1 > PTRDIFF_MAX - SIZE_ALIGN - PAGE_SIZE) { if (*n) { errno = ENOMEM; return -1; } else { *n = SIZE_ALIGN; return 0; } } *n = (*n + OVERHEAD + SIZE_ALIGN - 1) & SIZE_MASK; return 0; } static void unbin(struct chunk *c, int i) { if (c->prev == c->next) a_and_64(&mal.binmap, ~(1ULL<prev->next = c->next; c->next->prev = c->prev; c->csize |= C_INUSE; NEXT_CHUNK(c)->psize |= C_INUSE; } static int alloc_fwd(struct chunk *c) { int i; size_t k; while (!((k=c->csize) & C_INUSE)) { i = bin_index(k); lock_bin(i); if (c->csize == k) { unbin(c, i); unlock_bin(i); return 1; } unlock_bin(i); } return 0; } static int alloc_rev(struct chunk *c) { int i; size_t k; while (!((k=c->psize) & C_INUSE)) { i = bin_index(k); lock_bin(i); if (c->psize == k) { unbin(PREV_CHUNK(c), i); unlock_bin(i); return 1; } unlock_bin(i); } return 0; } /* pretrim - trims a chunk _prior_ to removing it from its bin. * Must be called with i as the ideal bin for size n, j the bin * for the _free_ chunk self, and bin j locked. */ static int pretrim(struct chunk *self, size_t n, int i, int j) { size_t n1; struct chunk *next, *split; /* We cannot pretrim if it would require re-binning. */ if (j < 40) return 0; if (j < i+3) { if (j != 63) return 0; n1 = CHUNK_SIZE(self); if (n1-n <= MMAP_THRESHOLD) return 0; } else { n1 = CHUNK_SIZE(self); } if (bin_index(n1-n) != j) return 0; next = NEXT_CHUNK(self); split = (void *)((char *)self + n); split->prev = self->prev; split->next = self->next; split->prev->next = split; split->next->prev = split; split->psize = n | C_INUSE; split->csize = n1-n; next->psize = n1-n; self->csize = n | C_INUSE; return 1; } static void trim(struct chunk *self, size_t n) { size_t n1 = CHUNK_SIZE(self); struct chunk *next, *split; if (n >= n1 - DONTCARE) return; next = NEXT_CHUNK(self); split = (void *)((char *)self + n); split->psize = n | C_INUSE; split->csize = n1-n | C_INUSE; next->psize = n1-n | C_INUSE; self->csize = n | C_INUSE; free(CHUNK_TO_MEM(split)); } void *malloc(size_t n) { struct chunk *c; int i, j; if (adjust_size(&n) < 0) return 0; if (n > MMAP_THRESHOLD) { size_t len = n + OVERHEAD + PAGE_SIZE - 1 & -PAGE_SIZE; char *base = mmap(0, len, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); if (base == (void *)-1) return 0; c = (void *)(base + SIZE_ALIGN - OVERHEAD); c->csize = len - (SIZE_ALIGN - OVERHEAD); c->psize = SIZE_ALIGN - OVERHEAD; return CHUNK_TO_MEM(c); } i = bin_index_up(n); for (;;) { uint64_t mask = mal.binmap & -(1ULL<psize = c->csize = x->csize + CHUNK_SIZE(c); } break; } j = first_set(mask); lock_bin(j); c = mal.bins[j].head; if (c != BIN_TO_CHUNK(j)) { if (!pretrim(c, n, i, j)) unbin(c, j); unlock_bin(j); break; } unlock_bin(j); } /* Now patch up in case we over-allocated */ trim(c, n); return CHUNK_TO_MEM(c); } void *__malloc0(size_t n) { void *p = malloc(n); if (p && !IS_MMAPPED(MEM_TO_CHUNK(p))) { size_t *z; n = (n + sizeof *z - 1)/sizeof *z; for (z=p; n; n--, z++) if (*z) *z=0; } return p; } void *realloc(void *p, size_t n) { struct chunk *self, *next; size_t n0, n1; void *new; if (!p) return malloc(n); if (adjust_size(&n) < 0) return 0; self = MEM_TO_CHUNK(p); n1 = n0 = CHUNK_SIZE(self); if (IS_MMAPPED(self)) { size_t extra = self->psize; char *base = (char *)self - extra; size_t oldlen = n0 + extra; size_t newlen = n + extra; /* Crash on realloc of freed chunk */ if (extra & 1) a_crash(); if (newlen < PAGE_SIZE && (new = malloc(n))) { memcpy(new, p, n-OVERHEAD); free(p); return new; } newlen = (newlen + PAGE_SIZE-1) & -PAGE_SIZE; if (oldlen == newlen) return p; base = mremap(base, oldlen, newlen, MREMAP_MAYMOVE); if (base == (void *)-1) return newlen < oldlen ? p : 0; self = (void *)(base + extra); self->csize = newlen - extra; return CHUNK_TO_MEM(self); } next = NEXT_CHUNK(self); /* Crash on corrupted footer (likely from buffer overflow) */ if (next->psize != self->csize) a_crash(); /* Merge adjacent chunks if we need more space. This is not * a waste of time even if we fail to get enough space, because our * subsequent call to free would otherwise have to do the merge. */ if (n > n1 && alloc_fwd(next)) { n1 += CHUNK_SIZE(next); next = NEXT_CHUNK(next); } /* FIXME: find what's wrong here and reenable it..? */ if (0 && n > n1 && alloc_rev(self)) { self = PREV_CHUNK(self); n1 += CHUNK_SIZE(self); } self->csize = n1 | C_INUSE; next->psize = n1 | C_INUSE; /* If we got enough space, split off the excess and return */ if (n <= n1) { //memmove(CHUNK_TO_MEM(self), p, n0-OVERHEAD); trim(self, n); return CHUNK_TO_MEM(self); } /* As a last resort, allocate a new chunk and copy to it. */ new = malloc(n-OVERHEAD); if (!new) return 0; memcpy(new, p, n0-OVERHEAD); free(CHUNK_TO_MEM(self)); return new; } void free(void *p) { struct chunk *self = MEM_TO_CHUNK(p); struct chunk *next; size_t final_size, new_size, size; int reclaim=0; int i; if (!p) return; if (IS_MMAPPED(self)) { size_t extra = self->psize; char *base = (char *)self - extra; size_t len = CHUNK_SIZE(self) + extra; /* Crash on double free */ if (extra & 1) a_crash(); munmap(base, len); return; } final_size = new_size = CHUNK_SIZE(self); next = NEXT_CHUNK(self); /* Crash on corrupted footer (likely from buffer overflow) */ if (next->psize != self->csize) a_crash(); for (;;) { if (self->psize & next->csize & C_INUSE) { self->csize = final_size | C_INUSE; next->psize = final_size | C_INUSE; i = bin_index(final_size); lock_bin(i); lock(mal.free_lock); if (self->psize & next->csize & C_INUSE) break; unlock(mal.free_lock); unlock_bin(i); } if (alloc_rev(self)) { self = PREV_CHUNK(self); size = CHUNK_SIZE(self); final_size += size; if (new_size+size > RECLAIM && (new_size+size^size) > size) reclaim = 1; } if (alloc_fwd(next)) { size = CHUNK_SIZE(next); final_size += size; if (new_size+size > RECLAIM && (new_size+size^size) > size) reclaim = 1; next = NEXT_CHUNK(next); } } if (!(mal.binmap & 1ULL<csize = final_size; next->psize = final_size; unlock(mal.free_lock); self->next = BIN_TO_CHUNK(i); self->prev = mal.bins[i].tail; self->next->prev = self; self->prev->next = self; /* Replace middle of large chunks with fresh zero pages */ if (reclaim) { uintptr_t a = (uintptr_t)self + SIZE_ALIGN+PAGE_SIZE-1 & -PAGE_SIZE; uintptr_t b = (uintptr_t)next - SIZE_ALIGN & -PAGE_SIZE; #if 1 madvise((void *)a, b-a, MADV_DONTNEED); #else mmap((void *)a, b-a, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED, -1, 0); #endif } unlock_bin(i); }