# TVM Relay [TVM][] is a compiler for machine learning frameworks that can optimize and target kernels to several different backends. [Relay][] is a high level intermediate representation for the TVM framework. The goal of Relay is to replace old computation graph based IRs with a more expressive IR. More information can be found in [this paper][roesch-etal]. The TVM Relay frontend lives in the [relay-lang][] folder in the Calyx repository and generates Calyx components from the Relay intermediate representation. ## Installation 1. Clone the TVM repository with commit hash `ccacb1ec1`): git clone --recursive git@github.com:apache/incubator-tvm.git cd incubator-tvm && git reset --hard ccacb1ec1 2. Set up to build (the default configuration is fine because we don't need any fancy backends like LLVM or CUDA): mkdir build && cd build cp ../cmake/config.cmake . 4. Build TVM: cmake -G Ninja .. && ninja 5. Install the `tvm` Python package by building a [wheel][]: cd ../python && python3 setup.py bdist_wheel pip3 install --user dist/tvm-*.whl 6. Install the accompanying `topi` Python package: cd ../topi/python && python3 setup.py bdist_wheel pip3 install --user dist/topi-*.whl 7. Install ANTLR v4.7.2 (required for the Relay text format parser): pip3 install -Iv antlr4-python3-runtime==4.7.2 8. To run the [MLP net][] and [VGG net][] examples, install `pytest`: pip3 install pytest 9. Install [Dahlia][], which is used when lowering Relay call nodes to Calyx. 10. Install the [calyx-py](../calyx-py.md) library. Run an Example -------------- Try this to run a simple example: cd calyx/frontends/relay python3 example.py tensor_add - `-h`: Help option; shows available examples. - `-r`: Dumps the Relay IR. Otherwise, it dumps the Calyx output. Simulate an ONNX Model -------------- A simple script is provided to run an Open Neural Network Exchange (ONNX) model. In addition to installing TVM Relay above, you'll need the following PIP installations for ONNX simulation and image pre-processing: pip3 install opencv-python Pillow mxnet onnx simplejson For example, we can simulate the LeNet ONNX model found [here][lenet] using the following command: python3 frontends/relay/onnx_to_calyx.py \ -n "lenet" \ -d "MNIST" \ -i "/path/to/image.png" \ -onnx "/path/to/model.onnx" \ -o calyx - `-n`: The name of the input net. This is mostly used for naming the output files. - `-d`: The dataset for which the input will be classified against. This is necessary to determine what preprocessing should be done on the image. e.g. `"mnist"` or `"imagenet"`. - `-i`: The file path to the input image which you want classified. - `-onnx`: The file path to the ONNX model. - `-o`: The type of output. 1. `tvm`: Executes the ONNX model using the TVM executor. Prints the final softmax value to console. No postprocessing is conducted. 2. `relay`: Output a file with the corresponding Relay program. `.relay` 3. `calyx`: Output a `.data` file and Calyx program for simulation. `.futil`, `.data` 4. `all`: All the above. [lenet]: https://github.com/ekut-es/pico-cnn/blob/master/data/lenet/lenet.onnx [relay-lang]: https://github.com/cucapra/calyx/tree/master/frontends/relay [roesch-etal]: https://arxiv.org/abs/1904.08368 [vgg net]: https://github.com/apache/incubator-tvm/blob/main/python/tvm/relay/testing/vgg.py [mlp net]: https://github.com/apache/incubator-tvm/blob/main/python/tvm/relay/testing/mlp.py [dahlia]: https://github.com/cucapra/dahlia#set-it-up [onnx]: https://onnx.ai/ [tvm]: https://tvm.apache.org [tvm-install]: https://tvm.apache.org/docs/install/from_source.html#developers-get-source-from-github [relay]: https://tvm.apache.org/docs/api/python/relay/index.html [wheel]: https://packaging.python.org/guides/distributing-packages-using-setuptools/#wheels