extern crate kdtree; extern crate rand; use rand::Rng; use kdtree::kdtree::test_common::*; use kdtree::kdtree::KdtreePointTrait; fn gen_random() -> f64 { rand::thread_rng().gen_range(0., 10000.) } fn find_nn_with_linear_search(points : &Vec, find_for : Point3WithId) -> &Point3WithId { let distance_fun = kdtree::kdtree::distance::squared_euclidean; let mut best_found_distance = distance_fun(find_for.dims(), points[0].dims()); let mut closed_found_point = &points[0]; for p in points { let dist = distance_fun(find_for.dims(), p.dims()); if dist < best_found_distance { best_found_distance = dist; closed_found_point = &p; } } closed_found_point } fn generate_points(point_count : usize) -> Vec { let mut points : Vec = vec![]; for i in 0 .. point_count { points.push(Point3WithId::new(i as i32, gen_random(),gen_random(),gen_random())); } points } #[test] fn test_against_1000_random_points() { let point_count = 1000usize; let points = generate_points(point_count); kdtree::kdtree::test_common::Point1WithId::new(0,0.); let tree = kdtree::kdtree::Kdtree::new(&mut points.clone()); //test points pushed into the tree, id should be equal. for i in 0 .. point_count { let p = &points[i]; assert_eq!(p.id, tree.nearest_search(p).id ); } //test randomly generated points within the cube. and do the linear search. should match for _ in 0 .. 500 { let p = Point3WithId::new(0i32, gen_random(), gen_random(), gen_random()); let found_by_linear_search = find_nn_with_linear_search(&points, p); let point_found_by_kdtree = tree.nearest_search(&p); assert_eq!(point_found_by_kdtree.id, found_by_linear_search.id); } } #[test] fn test_incrementally_build_tree_against_built_at_once() { let point_count = 2000usize; let mut points = generate_points(point_count); let tree_built_at_once = kdtree::kdtree::Kdtree::new(&mut points.clone()); let mut tree_built_incrementally = kdtree::kdtree::Kdtree::new(&mut points[0..1]); for i in 1 .. point_count { let p = &points[i]; tree_built_incrementally.insert_node(p.clone()); } //test points pushed into the tree, id should be equal. for i in 0 .. point_count { let p = &points[i]; assert_eq!(tree_built_at_once.nearest_search(p).id, tree_built_incrementally.nearest_search(p).id); } //test randomly generated points within the cube. and do the linear search. should match for _ in 0 .. 5000 { let p = Point3WithId::new(0i32, gen_random(), gen_random(), gen_random()); assert_eq!(tree_built_at_once.nearest_search(&p).id, tree_built_incrementally.nearest_search(&p).id); } }