# gammatest ## Definition [gammatest](https://github.com/SaadDAHMANI/gammatest) is a simple [rust](https://github.com/rust-lang/rust) implementation of the Gamma Test. Gamma Test [1] is non-parametric test for feature selection frequently used in machine learning. The [gammatest](https://github.com/SaadDAHMANI/gammatest) crate is based on [the paper](https://ijssst.info/Vol-06/No-1&2/Kemp.pdf) [2]. ### References [1] Stefánsson, A., Končar, N., & Jones, A. J. (1997). A note on the gamma test. Neural Computing & Applications, 5(3), 131-133. [2] Kemp, S. E., Wilson, I. D., & Ware, J. A. (2004). A tutorial on the gamma test. International Journal of Simulation: Systems, Science and Technology, 6(1-2), 67-75. ## Example ```rust use gammatest::*; fn main() { // Give the input matrix let inputs =[ [3.0f32, 4.0, 4.0].to_vec(), [2.0f32, 1.0, 3.0].to_vec(), [1.0f32, 0.0, 1.0].to_vec(), [1.0f32, 1.0, 1.0].to_vec(), ]; // Give the output vector let output = [54.0f32, 30.0, 3.0, 28.0]; // p is the number of neighbors let p : usize = 3; // Build the GammaTest using f32 data type let mut gt : GammaTest = GammaTest::new(&inputs, &output, p); // To use f64 data type //let mut gt : GammaTest = GammaTest::new(&inputs, &output, p); // Call function compute() to compute GammaTest parameters. gt.compute(); // Check results assert_eq!(gt.slope, Some(33.54095)); assert_eq!(gt.intercept, Some(20.578278)); } ``` ## Current development state In the current version, [gammatest](https://github.com/SaadDAHMANI/gammatest) uses the "Brute force approach" to sort k-near neighbors, which is a simple but slow method comparing to some others.