############################################################################ # # Program: GDCM (Grassroots DICOM). A DICOM library # # Copyright (c) 2006-2011 Mathieu Malaterre # All rights reserved. # See Copyright.txt or http://gdcm.sourceforge.net/Copyright.html for details. # # This software is distributed WITHOUT ANY WARRANTY; without even # the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR # PURPOSE. See the above copyright notice for more information. # ############################################################################ """ save a DICOM image with PIL via numpy Caveats: - Does not support UINT12/INT12 Usage: python ConvertNumpy.py "IM000000" Thanks: plotting example - Ray Schumacher 2009 """ import gdcm import numpy from PIL import Image, ImageOps def get_gdcm_to_numpy_typemap(): """Returns the GDCM Pixel Format to numpy array type mapping.""" _gdcm_np = {gdcm.PixelFormat.UINT8 :numpy.int8, gdcm.PixelFormat.INT8 :numpy.uint8, gdcm.PixelFormat.UINT16 :numpy.uint16, gdcm.PixelFormat.INT16 :numpy.int16, gdcm.PixelFormat.UINT32 :numpy.uint32, gdcm.PixelFormat.INT32 :numpy.int32, gdcm.PixelFormat.FLOAT32:numpy.float32, gdcm.PixelFormat.FLOAT64:numpy.float64 } return _gdcm_np def get_numpy_array_type(gdcm_pixel_format): """Returns a numpy array typecode given a GDCM Pixel Format.""" return get_gdcm_to_numpy_typemap()[gdcm_pixel_format] def gdcm_to_numpy(image): """Converts a GDCM image to a numpy array. """ pf = image.GetPixelFormat().GetScalarType() print 'pf', pf print image.GetPixelFormat().GetScalarTypeAsString() assert pf in get_gdcm_to_numpy_typemap().keys(), \ "Unsupported array type %s"%pf d = image.GetDimension(0), image.GetDimension(1) print 'Image Size: %d x %d' % (d[0], d[1]) dtype = get_numpy_array_type(pf) gdcm_array = image.GetBuffer() result = numpy.frombuffer(gdcm_array, dtype=dtype) maxV = float(result[result.argmax()]) ## linear gamma adjust #result = result + .5*(maxV-result) ## log gamma result = numpy.log(result+50) ## 50 is apprx background level maxV = float(result[result.argmax()]) result = result*(2.**8/maxV) ## histogram stretch result.shape = d return result if __name__ == "__main__": import sys r = gdcm.ImageReader() filename = sys.argv[1] r.SetFileName( filename ) if not r.Read(): sys.exit(1) numpy_array = gdcm_to_numpy( r.GetImage() ) ## L is 8 bit grey ## http://www.pythonware.com/library/pil/handbook/concepts.htm pilImage = Image.frombuffer('L', numpy_array.shape, numpy_array.astype(numpy.uint8), 'raw','L',0,1) ## cutoff removes background noise and spikes pilImage = ImageOps.autocontrast(pilImage, cutoff=.1) pilImage.save(sys.argv[1]+'.jpg')