/* * jdphuff.c * * Copyright (C) 1995-1998, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains Huffman entropy decoding routines for progressive JPEG. * * Much of the complexity here has to do with supporting input suspension. * If the data source module demands suspension, we want to be able to back * up to the start of the current MCU. To do this, we copy state variables * into local working storage, and update them back to the permanent * storage only upon successful completion of an MCU. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jlossy.h" /* Private declarations for lossy subsystem */ #include "jdhuff.h" /* Declarations shared with jd*huff.c */ #ifdef D_PROGRESSIVE_SUPPORTED /* * Private entropy decoder object for progressive Huffman decoding. * * The savable_state subrecord contains fields that change within an MCU, * but must not be updated permanently until we complete the MCU. */ typedef struct { unsigned int EOBRUN; /* remaining EOBs in EOBRUN */ int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ } savable_state; /* This macro is to work around compilers with missing or broken * structure assignment. You'll need to fix this code if you have * such a compiler and you change MAX_COMPS_IN_SCAN. */ #ifndef NO_STRUCT_ASSIGN #define ASSIGN_STATE(dest,src) ((dest) = (src)) #else #if MAX_COMPS_IN_SCAN == 4 #define ASSIGN_STATE(dest,src) \ ((dest).EOBRUN = (src).EOBRUN, \ (dest).last_dc_val[0] = (src).last_dc_val[0], \ (dest).last_dc_val[1] = (src).last_dc_val[1], \ (dest).last_dc_val[2] = (src).last_dc_val[2], \ (dest).last_dc_val[3] = (src).last_dc_val[3]) #endif #endif typedef struct { huffd_common_fields; /* Fields shared with other entropy decoders */ /* These fields are loaded into local variables at start of each MCU. * In case of suspension, we exit WITHOUT updating them. */ savable_state saved; /* Other state at start of MCU */ /* These fields are NOT loaded into local working state. */ unsigned int restarts_to_go; /* MCUs left in this restart interval */ /* Pointers to derived tables (these workspaces have image lifespan) */ d_derived_tbl * derived_tbls[NUM_HUFF_TBLS]; d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */ } phuff_entropy_decoder; typedef phuff_entropy_decoder * phuff_entropy_ptr; /* Forward declarations */ METHODDEF(boolean) decode_mcu_DC_first JPP((j_decompress_ptr cinfo, JBLOCKROW *MCU_data)); METHODDEF(boolean) decode_mcu_AC_first JPP((j_decompress_ptr cinfo, JBLOCKROW *MCU_data)); METHODDEF(boolean) decode_mcu_DC_refine JPP((j_decompress_ptr cinfo, JBLOCKROW *MCU_data)); METHODDEF(boolean) decode_mcu_AC_refine JPP((j_decompress_ptr cinfo, JBLOCKROW *MCU_data)); /* * Initialize for a Huffman-compressed scan. */ METHODDEF(void) start_pass_phuff_decoder (j_decompress_ptr cinfo) { j_lossy_d_ptr lossyd = (j_lossy_d_ptr) cinfo->codec; phuff_entropy_ptr entropy = (phuff_entropy_ptr) lossyd->entropy_private; boolean is_DC_band, bad; int ci, coefi, tbl; int *coef_bit_ptr; jpeg_component_info * compptr; is_DC_band = (cinfo->Ss == 0); /* Validate scan parameters */ bad = FALSE; if (is_DC_band) { if (cinfo->Se != 0) bad = TRUE; } else { /* need not check Ss/Se < 0 since they came from unsigned bytes */ if (cinfo->Ss > cinfo->Se || cinfo->Se >= DCTSIZE2) bad = TRUE; /* AC scans may have only one component */ if (cinfo->comps_in_scan != 1) bad = TRUE; } if (cinfo->Ah != 0) { /* Successive approximation refinement scan: must have Al = Ah-1. */ if (cinfo->Al != cinfo->Ah-1) bad = TRUE; } if (cinfo->Al > 13) /* need not check for < 0 */ bad = TRUE; /* Arguably the maximum Al value should be less than 13 for 8-bit precision, * but the spec doesn't say so, and we try to be liberal about what we * accept. Note: large Al values could result in out-of-range DC * coefficients during early scans, leading to bizarre displays due to * overflows in the IDCT math. But we won't crash. */ if (bad) ERREXIT4(cinfo, JERR_BAD_PROGRESSION, cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); /* Update progression status, and verify that scan order is legal. * Note that inter-scan inconsistencies are treated as warnings * not fatal errors ... not clear if this is right way to behave. */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { int cindex = cinfo->cur_comp_info[ci]->component_index; coef_bit_ptr = & cinfo->coef_bits[cindex][0]; if (!is_DC_band && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; if (cinfo->Ah != expected) WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); coef_bit_ptr[coefi] = cinfo->Al; } } /* Select MCU decoding routine */ if (cinfo->Ah == 0) { if (is_DC_band) lossyd->entropy_decode_mcu = decode_mcu_DC_first; else lossyd->entropy_decode_mcu = decode_mcu_AC_first; } else { if (is_DC_band) lossyd->entropy_decode_mcu = decode_mcu_DC_refine; else lossyd->entropy_decode_mcu = decode_mcu_AC_refine; } for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; /* Make sure requested tables are present, and compute derived tables. * We may build same derived table more than once, but it's not expensive. */ if (is_DC_band) { if (cinfo->Ah == 0) { /* DC refinement needs no table */ tbl = compptr->dc_tbl_no; jpeg_make_d_derived_tbl(cinfo, TRUE, tbl, & entropy->derived_tbls[tbl]); } } else { tbl = compptr->ac_tbl_no; jpeg_make_d_derived_tbl(cinfo, FALSE, tbl, & entropy->derived_tbls[tbl]); /* remember the single active table */ entropy->ac_derived_tbl = entropy->derived_tbls[tbl]; } /* Initialize DC predictions to 0 */ entropy->saved.last_dc_val[ci] = 0; } /* Initialize bitread state variables */ entropy->bitstate.bits_left = 0; entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ entropy->insufficient_data = FALSE; /* Initialize private state variables */ entropy->saved.EOBRUN = 0; /* Initialize restart counter */ entropy->restarts_to_go = cinfo->restart_interval; } /* * Figure F.12: extend sign bit. * On some machines, a shift and add will be faster than a table lookup. */ #ifdef AVOID_TABLES #define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1u)<<(s)) + 1) : (x)) #else #define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x)) static const int extend_test[16] = /* entry n is 2**(n-1) */ { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 }; static const int extend_offset[16] = /* entry n is (-1u << n) + 1 */ { 0, ((-1u)<<1) + 1, ((-1u)<<2) + 1, ((-1u)<<3) + 1, ((-1u)<<4) + 1, ((-1u)<<5) + 1, ((-1u)<<6) + 1, ((-1u)<<7) + 1, ((-1u)<<8) + 1, ((-1u)<<9) + 1, ((-1u)<<10) + 1, ((-1u)<<11) + 1, ((-1u)<<12) + 1, ((-1u)<<13) + 1, ((-1u)<<14) + 1, ((-1u)<<15) + 1 }; #endif /* AVOID_TABLES */ /* * Check for a restart marker & resynchronize decoder. * Returns FALSE if must suspend. */ LOCAL(boolean) process_restart (j_decompress_ptr cinfo) { j_lossy_d_ptr lossyd = (j_lossy_d_ptr) cinfo->codec; phuff_entropy_ptr entropy = (phuff_entropy_ptr) lossyd->entropy_private; int ci; /* Throw away any unused bits remaining in bit buffer; */ /* include any full bytes in next_marker's count of discarded bytes */ cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; entropy->bitstate.bits_left = 0; /* Advance past the RSTn marker */ if (! (*cinfo->marker->read_restart_marker) (cinfo)) return FALSE; /* Re-initialize DC predictions to 0 */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) entropy->saved.last_dc_val[ci] = 0; /* Re-init EOB run count, too */ entropy->saved.EOBRUN = 0; /* Reset restart counter */ entropy->restarts_to_go = cinfo->restart_interval; /* Reset out-of-data flag, unless read_restart_marker left us smack up * against a marker. In that case we will end up treating the next data * segment as empty, and we can avoid producing bogus output pixels by * leaving the flag set. */ if (cinfo->unread_marker == 0) entropy->insufficient_data = FALSE; return TRUE; } /* * Huffman MCU decoding. * Each of these routines decodes and returns one MCU's worth of * Huffman-compressed coefficients. * The coefficients are reordered from zigzag order into natural array order, * but are not dequantized. * * The i'th block of the MCU is stored into the block pointed to by * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER. * * We return FALSE if data source requested suspension. In that case no * changes have been made to permanent state. (Exception: some output * coefficients may already have been assigned. This is harmless for * spectral selection, since we'll just re-assign them on the next call. * Successive approximation AC refinement has to be more careful, however.) */ /* * MCU decoding for DC initial scan (either spectral selection, * or first pass of successive approximation). */ METHODDEF(boolean) decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { j_lossy_d_ptr lossyd = (j_lossy_d_ptr) cinfo->codec; phuff_entropy_ptr entropy = (phuff_entropy_ptr) lossyd->entropy_private; int Al = cinfo->Al; register int s, r; int blkn, ci; JBLOCKROW block; BITREAD_STATE_VARS; savable_state state; d_derived_tbl * tbl; jpeg_component_info * compptr; /* Process restart marker if needed; may have to suspend */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) if (! process_restart(cinfo)) return FALSE; } /* If we've run out of data, just leave the MCU set to zeroes. * This way, we return uniform gray for the remainder of the segment. */ if (! entropy->insufficient_data) { /* Load up working state */ BITREAD_LOAD_STATE(cinfo,entropy->bitstate); ASSIGN_STATE(state, entropy->saved); /* Outer loop handles each block in the MCU */ for (blkn = 0; blkn < cinfo->data_units_in_MCU; blkn++) { block = MCU_data[blkn]; ci = cinfo->MCU_membership[blkn]; compptr = cinfo->cur_comp_info[ci]; tbl = entropy->derived_tbls[compptr->dc_tbl_no]; /* Decode a single block's worth of coefficients */ /* Section F.2.2.1: decode the DC coefficient difference */ HUFF_DECODE(s, br_state, tbl, return FALSE, label1); if (s) { CHECK_BIT_BUFFER(br_state, s, return FALSE); r = GET_BITS(s); s = HUFF_EXTEND(r, s); } /* Convert DC difference to actual value, update last_dc_val */ s += state.last_dc_val[ci]; state.last_dc_val[ci] = s; /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */ (*block)[0] = (JCOEF) (s << Al); } /* Completed MCU, so update state */ BITREAD_SAVE_STATE(cinfo,entropy->bitstate); ASSIGN_STATE(entropy->saved, state); } /* Account for restart interval (no-op if not using restarts) */ entropy->restarts_to_go--; return TRUE; } /* * MCU decoding for AC initial scan (either spectral selection, * or first pass of successive approximation). */ METHODDEF(boolean) decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { j_lossy_d_ptr lossyd = (j_lossy_d_ptr) cinfo->codec; phuff_entropy_ptr entropy = (phuff_entropy_ptr) lossyd->entropy_private; int Se = cinfo->Se; int Al = cinfo->Al; register int s, k, r; unsigned int EOBRUN; JBLOCKROW block; BITREAD_STATE_VARS; d_derived_tbl * tbl; /* Process restart marker if needed; may have to suspend */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) if (! process_restart(cinfo)) return FALSE; } /* If we've run out of data, just leave the MCU set to zeroes. * This way, we return uniform gray for the remainder of the segment. */ if (! entropy->insufficient_data) { /* Load up working state. * We can avoid loading/saving bitread state if in an EOB run. */ EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ /* There is always only one block per MCU */ if (EOBRUN > 0) /* if it's a band of zeroes... */ EOBRUN--; /* ...process it now (we do nothing) */ else { BITREAD_LOAD_STATE(cinfo,entropy->bitstate); block = MCU_data[0]; tbl = entropy->ac_derived_tbl; for (k = cinfo->Ss; k <= Se; k++) { HUFF_DECODE(s, br_state, tbl, return FALSE, label2); r = s >> 4; s &= 15; if (s) { k += r; CHECK_BIT_BUFFER(br_state, s, return FALSE); r = GET_BITS(s); s = HUFF_EXTEND(r, s); /* Scale and output coefficient in natural (dezigzagged) order */ (*block)[jpeg_natural_order[k]] = (JCOEF) (s << Al); } else { if (r == 15) { /* ZRL */ k += 15; /* skip 15 zeroes in band */ } else { /* EOBr, run length is 2^r + appended bits */ EOBRUN = 1 << r; if (r) { /* EOBr, r > 0 */ CHECK_BIT_BUFFER(br_state, r, return FALSE); r = GET_BITS(r); EOBRUN += r; } EOBRUN--; /* this band is processed at this moment */ break; /* force end-of-band */ } } } BITREAD_SAVE_STATE(cinfo,entropy->bitstate); } /* Completed MCU, so update state */ entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ } /* Account for restart interval (no-op if not using restarts) */ entropy->restarts_to_go--; return TRUE; } /* * MCU decoding for DC successive approximation refinement scan. * Note: we assume such scans can be multi-component, although the spec * is not very clear on the point. */ METHODDEF(boolean) decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { j_lossy_d_ptr lossyd = (j_lossy_d_ptr) cinfo->codec; phuff_entropy_ptr entropy = (phuff_entropy_ptr) lossyd->entropy_private; int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ int blkn; JBLOCKROW block; BITREAD_STATE_VARS; /* Process restart marker if needed; may have to suspend */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) if (! process_restart(cinfo)) return FALSE; } /* Not worth the cycles to check insufficient_data here, * since we will not change the data anyway if we read zeroes. */ /* Load up working state */ BITREAD_LOAD_STATE(cinfo,entropy->bitstate); /* Outer loop handles each block in the MCU */ for (blkn = 0; blkn < cinfo->data_units_in_MCU; blkn++) { block = MCU_data[blkn]; /* Encoded data is simply the next bit of the two's-complement DC value */ CHECK_BIT_BUFFER(br_state, 1, return FALSE); if (GET_BITS(1)) (*block)[0] |= p1; /* Note: since we use |=, repeating the assignment later is safe */ } /* Completed MCU, so update state */ BITREAD_SAVE_STATE(cinfo,entropy->bitstate); /* Account for restart interval (no-op if not using restarts) */ entropy->restarts_to_go--; return TRUE; } /* * MCU decoding for AC successive approximation refinement scan. */ METHODDEF(boolean) decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { j_lossy_d_ptr lossyd = (j_lossy_d_ptr) cinfo->codec; phuff_entropy_ptr entropy = (phuff_entropy_ptr) lossyd->entropy_private; int Se = cinfo->Se; int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ int m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */ register int s, k, r; unsigned int EOBRUN; JBLOCKROW block; JCOEFPTR thiscoef; BITREAD_STATE_VARS; d_derived_tbl * tbl; int num_newnz; int newnz_pos[DCTSIZE2]; /* Process restart marker if needed; may have to suspend */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) if (! process_restart(cinfo)) return FALSE; } /* If we've run out of data, don't modify the MCU. */ if (! entropy->insufficient_data) { /* Load up working state */ BITREAD_LOAD_STATE(cinfo,entropy->bitstate); EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ /* There is always only one block per MCU */ block = MCU_data[0]; tbl = entropy->ac_derived_tbl; /* If we are forced to suspend, we must undo the assignments to any newly * nonzero coefficients in the block, because otherwise we'd get confused * next time about which coefficients were already nonzero. * But we need not undo addition of bits to already-nonzero coefficients; * instead, we can test the current bit to see if we already did it. */ num_newnz = 0; /* initialize coefficient loop counter to start of band */ k = cinfo->Ss; if (EOBRUN == 0) { for (; k <= Se; k++) { HUFF_DECODE(s, br_state, tbl, goto undoit, label3); r = s >> 4; s &= 15; if (s) { if (s != 1) /* size of new coef should always be 1 */ WARNMS(cinfo, JWRN_HUFF_BAD_CODE); CHECK_BIT_BUFFER(br_state, 1, goto undoit); if (GET_BITS(1)) s = p1; /* newly nonzero coef is positive */ else s = m1; /* newly nonzero coef is negative */ } else { if (r != 15) { EOBRUN = 1 << r; /* EOBr, run length is 2^r + appended bits */ if (r) { CHECK_BIT_BUFFER(br_state, r, goto undoit); r = GET_BITS(r); EOBRUN += r; } break; /* rest of block is handled by EOB logic */ } /* note s = 0 for processing ZRL */ } /* Advance over already-nonzero coefs and r still-zero coefs, * appending correction bits to the nonzeroes. A correction bit is 1 * if the absolute value of the coefficient must be increased. */ do { thiscoef = *block + jpeg_natural_order[k]; if (*thiscoef != 0) { CHECK_BIT_BUFFER(br_state, 1, goto undoit); if (GET_BITS(1)) { if ((*thiscoef & p1) == 0) { /* do nothing if already set it */ if (*thiscoef >= 0) *thiscoef += p1; else *thiscoef += m1; } } } else { if (--r < 0) break; /* reached target zero coefficient */ } k++; } while (k <= Se); if (s) { int pos = jpeg_natural_order[k]; /* Output newly nonzero coefficient */ (*block)[pos] = (JCOEF) s; /* Remember its position in case we have to suspend */ newnz_pos[num_newnz++] = pos; } } } if (EOBRUN > 0) { /* Scan any remaining coefficient positions after the end-of-band * (the last newly nonzero coefficient, if any). Append a correction * bit to each already-nonzero coefficient. A correction bit is 1 * if the absolute value of the coefficient must be increased. */ for (; k <= Se; k++) { thiscoef = *block + jpeg_natural_order[k]; if (*thiscoef != 0) { CHECK_BIT_BUFFER(br_state, 1, goto undoit); if (GET_BITS(1)) { if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */ if (*thiscoef >= 0) *thiscoef += p1; else *thiscoef += m1; } } } } /* Count one block completed in EOB run */ EOBRUN--; } /* Completed MCU, so update state */ BITREAD_SAVE_STATE(cinfo,entropy->bitstate); entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ } /* Account for restart interval (no-op if not using restarts) */ entropy->restarts_to_go--; return TRUE; undoit: /* Re-zero any output coefficients that we made newly nonzero */ while (num_newnz > 0) (*block)[newnz_pos[--num_newnz]] = 0; return FALSE; } /* * Module initialization routine for progressive Huffman entropy decoding. */ GLOBAL(void) jinit_phuff_decoder (j_decompress_ptr cinfo) { j_lossy_d_ptr lossyd = (j_lossy_d_ptr) cinfo->codec; phuff_entropy_ptr entropy; int *coef_bit_ptr; int ci, i; entropy = (phuff_entropy_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(phuff_entropy_decoder)); lossyd->entropy_private = (void *) entropy; lossyd->entropy_start_pass = start_pass_phuff_decoder; /* Mark derived tables unallocated */ for (i = 0; i < NUM_HUFF_TBLS; i++) { entropy->derived_tbls[i] = NULL; } /* Create progression status table */ cinfo->coef_bits = (int (*)[DCTSIZE2]) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, cinfo->num_components*DCTSIZE2*SIZEOF(int)); coef_bit_ptr = & cinfo->coef_bits[0][0]; for (ci = 0; ci < cinfo->num_components; ci++) for (i = 0; i < DCTSIZE2; i++) *coef_bit_ptr++ = -1; } #endif /* D_PROGRESSIVE_SUPPORTED */