/* * bt_matchfinder.h - Lempel-Ziv matchfinding with a hash table of binary trees * * Originally public domain; changes after 2016-09-07 are copyrighted. * * Copyright 2016 Eric Biggers * * Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * ---------------------------------------------------------------------------- * * This is a Binary Trees (bt) based matchfinder. * * The main data structure is a hash table where each hash bucket contains a * binary tree of sequences whose first 4 bytes share the same hash code. Each * sequence is identified by its starting position in the input buffer. Each * binary tree is always sorted such that each left child represents a sequence * lexicographically lesser than its parent and each right child represents a * sequence lexicographically greater than its parent. * * The algorithm processes the input buffer sequentially. At each byte * position, the hash code of the first 4 bytes of the sequence beginning at * that position (the sequence being matched against) is computed. This * identifies the hash bucket to use for that position. Then, a new binary tree * node is created to represent the current sequence. Then, in a single tree * traversal, the hash bucket's binary tree is searched for matches and is * re-rooted at the new node. * * Compared to the simpler algorithm that uses linked lists instead of binary * trees (see hc_matchfinder.h), the binary tree version gains more information * at each node visitation. Ideally, the binary tree version will examine only * 'log(n)' nodes to find the same matches that the linked list version will * find by examining 'n' nodes. In addition, the binary tree version can * examine fewer bytes at each node by taking advantage of the common prefixes * that result from the sort order, whereas the linked list version may have to * examine up to the full length of the match at each node. * * However, it is not always best to use the binary tree version. It requires * nearly twice as much memory as the linked list version, and it takes time to * keep the binary trees sorted, even at positions where the compressor does not * need matches. Generally, when doing fast compression on small buffers, * binary trees are the wrong approach. They are best suited for thorough * compression and/or large buffers. * * ---------------------------------------------------------------------------- */ #ifndef LIB_BT_MATCHFINDER_H #define LIB_BT_MATCHFINDER_H #include "matchfinder_common.h" #define BT_MATCHFINDER_HASH3_ORDER 16 #define BT_MATCHFINDER_HASH3_WAYS 2 #define BT_MATCHFINDER_HASH4_ORDER 16 #define BT_MATCHFINDER_TOTAL_HASH_SIZE \ (((1UL << BT_MATCHFINDER_HASH3_ORDER) * BT_MATCHFINDER_HASH3_WAYS + \ (1UL << BT_MATCHFINDER_HASH4_ORDER)) * sizeof(mf_pos_t)) /* Representation of a match found by the bt_matchfinder */ struct lz_match { /* The number of bytes matched. */ u16 length; /* The offset back from the current position that was matched. */ u16 offset; }; struct bt_matchfinder { /* The hash table for finding length 3 matches */ mf_pos_t hash3_tab[1UL << BT_MATCHFINDER_HASH3_ORDER][BT_MATCHFINDER_HASH3_WAYS]; /* The hash table which contains the roots of the binary trees for * finding length 4+ matches */ mf_pos_t hash4_tab[1UL << BT_MATCHFINDER_HASH4_ORDER]; /* The child node references for the binary trees. The left and right * children of the node for the sequence with position 'pos' are * 'child_tab[pos * 2]' and 'child_tab[pos * 2 + 1]', respectively. */ mf_pos_t child_tab[2UL * MATCHFINDER_WINDOW_SIZE]; } #ifdef _aligned_attribute _aligned_attribute(MATCHFINDER_MEM_ALIGNMENT) #endif ; /* Prepare the matchfinder for a new input buffer. */ static forceinline void bt_matchfinder_init(struct bt_matchfinder *mf) { STATIC_ASSERT(BT_MATCHFINDER_TOTAL_HASH_SIZE % MATCHFINDER_SIZE_ALIGNMENT == 0); matchfinder_init((mf_pos_t *)mf, BT_MATCHFINDER_TOTAL_HASH_SIZE); } static forceinline void bt_matchfinder_slide_window(struct bt_matchfinder *mf) { STATIC_ASSERT(sizeof(*mf) % MATCHFINDER_SIZE_ALIGNMENT == 0); matchfinder_rebase((mf_pos_t *)mf, sizeof(*mf)); } static forceinline mf_pos_t * bt_left_child(struct bt_matchfinder *mf, s32 node) { return &mf->child_tab[2 * (node & (MATCHFINDER_WINDOW_SIZE - 1)) + 0]; } static forceinline mf_pos_t * bt_right_child(struct bt_matchfinder *mf, s32 node) { return &mf->child_tab[2 * (node & (MATCHFINDER_WINDOW_SIZE - 1)) + 1]; } /* The minimum permissible value of 'max_len' for bt_matchfinder_get_matches() * and bt_matchfinder_skip_position(). There must be sufficiently many bytes * remaining to load a 32-bit integer from the *next* position. */ #define BT_MATCHFINDER_REQUIRED_NBYTES 5 /* Advance the binary tree matchfinder by one byte, optionally recording * matches. @record_matches should be a compile-time constant. */ static forceinline struct lz_match * bt_matchfinder_advance_one_byte(struct bt_matchfinder * const restrict mf, const u8 * const restrict in_base, const ptrdiff_t cur_pos, const u32 max_len, const u32 nice_len, const u32 max_search_depth, u32 * const restrict next_hashes, u32 * const restrict best_len_ret, struct lz_match * restrict lz_matchptr, const bool record_matches) { const u8 *in_next = in_base + cur_pos; u32 depth_remaining = max_search_depth; const s32 cutoff = cur_pos - MATCHFINDER_WINDOW_SIZE; u32 next_hashseq; u32 hash3; u32 hash4; s32 cur_node; #if BT_MATCHFINDER_HASH3_WAYS >= 2 s32 cur_node_2; #endif const u8 *matchptr; mf_pos_t *pending_lt_ptr, *pending_gt_ptr; u32 best_lt_len, best_gt_len; u32 len; u32 best_len = 3; STATIC_ASSERT(BT_MATCHFINDER_HASH3_WAYS >= 1 && BT_MATCHFINDER_HASH3_WAYS <= 2); next_hashseq = get_unaligned_le32(in_next + 1); hash3 = next_hashes[0]; hash4 = next_hashes[1]; next_hashes[0] = lz_hash(next_hashseq & 0xFFFFFF, BT_MATCHFINDER_HASH3_ORDER); next_hashes[1] = lz_hash(next_hashseq, BT_MATCHFINDER_HASH4_ORDER); prefetchw(&mf->hash3_tab[next_hashes[0]]); prefetchw(&mf->hash4_tab[next_hashes[1]]); cur_node = mf->hash3_tab[hash3][0]; mf->hash3_tab[hash3][0] = cur_pos; #if BT_MATCHFINDER_HASH3_WAYS >= 2 cur_node_2 = mf->hash3_tab[hash3][1]; mf->hash3_tab[hash3][1] = cur_node; #endif if (record_matches && cur_node > cutoff) { u32 seq3 = load_u24_unaligned(in_next); if (seq3 == load_u24_unaligned(&in_base[cur_node])) { lz_matchptr->length = 3; lz_matchptr->offset = in_next - &in_base[cur_node]; lz_matchptr++; } #if BT_MATCHFINDER_HASH3_WAYS >= 2 else if (cur_node_2 > cutoff && seq3 == load_u24_unaligned(&in_base[cur_node_2])) { lz_matchptr->length = 3; lz_matchptr->offset = in_next - &in_base[cur_node_2]; lz_matchptr++; } #endif } cur_node = mf->hash4_tab[hash4]; mf->hash4_tab[hash4] = cur_pos; pending_lt_ptr = bt_left_child(mf, cur_pos); pending_gt_ptr = bt_right_child(mf, cur_pos); if (cur_node <= cutoff) { *pending_lt_ptr = MATCHFINDER_INITVAL; *pending_gt_ptr = MATCHFINDER_INITVAL; *best_len_ret = best_len; return lz_matchptr; } best_lt_len = 0; best_gt_len = 0; len = 0; for (;;) { matchptr = &in_base[cur_node]; if (matchptr[len] == in_next[len]) { len = lz_extend(in_next, matchptr, len + 1, max_len); if (!record_matches || len > best_len) { if (record_matches) { best_len = len; lz_matchptr->length = len; lz_matchptr->offset = in_next - matchptr; lz_matchptr++; } if (len >= nice_len) { *pending_lt_ptr = *bt_left_child(mf, cur_node); *pending_gt_ptr = *bt_right_child(mf, cur_node); *best_len_ret = best_len; return lz_matchptr; } } } if (matchptr[len] < in_next[len]) { *pending_lt_ptr = cur_node; pending_lt_ptr = bt_right_child(mf, cur_node); cur_node = *pending_lt_ptr; best_lt_len = len; if (best_gt_len < len) len = best_gt_len; } else { *pending_gt_ptr = cur_node; pending_gt_ptr = bt_left_child(mf, cur_node); cur_node = *pending_gt_ptr; best_gt_len = len; if (best_lt_len < len) len = best_lt_len; } if (cur_node <= cutoff || !--depth_remaining) { *pending_lt_ptr = MATCHFINDER_INITVAL; *pending_gt_ptr = MATCHFINDER_INITVAL; *best_len_ret = best_len; return lz_matchptr; } } } /* * Retrieve a list of matches with the current position. * * @mf * The matchfinder structure. * @in_base * Pointer to the next byte in the input buffer to process _at the last * time bt_matchfinder_init() or bt_matchfinder_slide_window() was called_. * @cur_pos * The current position in the input buffer relative to @in_base (the * position of the sequence being matched against). * @max_len * The maximum permissible match length at this position. Must be >= * BT_MATCHFINDER_REQUIRED_NBYTES. * @nice_len * Stop searching if a match of at least this length is found. * Must be <= @max_len. * @max_search_depth * Limit on the number of potential matches to consider. Must be >= 1. * @next_hashes * The precomputed hash codes for the sequence beginning at @in_next. * These will be used and then updated with the precomputed hashcodes for * the sequence beginning at @in_next + 1. * @best_len_ret * If a match of length >= 4 was found, then the length of the longest such * match is written here; otherwise 3 is written here. (Note: this is * redundant with the 'struct lz_match' array, but this is easier for the * compiler to optimize when inlined and the caller immediately does a * check against 'best_len'.) * @lz_matchptr * An array in which this function will record the matches. The recorded * matches will be sorted by strictly increasing length and (non-strictly) * increasing offset. The maximum number of matches that may be found is * 'nice_len - 2'. * * The return value is a pointer to the next available slot in the @lz_matchptr * array. (If no matches were found, this will be the same as @lz_matchptr.) */ static forceinline struct lz_match * bt_matchfinder_get_matches(struct bt_matchfinder *mf, const u8 *in_base, ptrdiff_t cur_pos, u32 max_len, u32 nice_len, u32 max_search_depth, u32 next_hashes[2], u32 *best_len_ret, struct lz_match *lz_matchptr) { return bt_matchfinder_advance_one_byte(mf, in_base, cur_pos, max_len, nice_len, max_search_depth, next_hashes, best_len_ret, lz_matchptr, true); } /* * Advance the matchfinder, but don't record any matches. * * This is very similar to bt_matchfinder_get_matches() because both functions * must do hashing and tree re-rooting. */ static forceinline void bt_matchfinder_skip_position(struct bt_matchfinder *mf, const u8 *in_base, ptrdiff_t cur_pos, u32 nice_len, u32 max_search_depth, u32 next_hashes[2]) { u32 best_len; bt_matchfinder_advance_one_byte(mf, in_base, cur_pos, nice_len, nice_len, max_search_depth, next_hashes, &best_len, NULL, false); } #endif /* LIB_BT_MATCHFINDER_H */