
Secure Code Review of BLS and
Gennaro-DKG Libraries

Technical Report

Lit Protocol

February 15, 2024
Version: 1.1

Corporate Headquarters
Kudelski Security – Nagravision Sàrl
Route de Genève, 22-24
1033 Cheseaux-sur-Lausanne
Switzerland

Public

Lit Protocol | Secure Code Review of BLS and Gennaro-DKG Libraries
February 15, 2024

DOCUMENT PROPERTIES

VERSION 1.1

FILE NAME 2024-01-03 LitProtocol Crypto Libraries v1.1.pdf

PUBLICATION DATE February 15, 2024

CONFIDENTIALITY LEVEL Public

DOCUMENT RECIPIENT Lit Protocol

DOCUMENT STATUS Final

CLIENT COMPANY NAME Lit Protocol

Copyright Notice

Kudelski Security, a business unit of Nagravision Sàrl is a member of the Kudelski Group of Com-
panies. This document is the intellectual property of Kudelski Security and contains confidential
and privileged information. The reproductions, modification, or communication to third parties (or to
other than the addressee) of any part of this document is strictly prohibited without the prior written
consent from Nagravision Sàrl.

© 2024 Nagravision Sàrl / All Rights Reserved.
Public

Page 1 of 37

Lit Protocol | Secure Code Review of BLS and Gennaro-DKG Libraries
February 15, 2024

TABLE OF CONTENTS

DOCUMENT PROPERTIES 1

TABLE OF CONTENTS 2

LIST OF FIGURES 3

LIST OF TABLES 3

1 EXECUTIVE SUMMARY 4
1.1 Key Findings . 4

2 PROJECT SUMMARY 5
2.1 Context . 5
2.2 Scope . 5
2.3 Remarks . 6
2.4 Fuzzing . 6
2.5 Test Coverage . 7
2.6 Additional Note . 7

3 FINDINGS 8
3.1 KS-LC–1 Missing Input Sanitization . 9
3.2 KS-LC–2 Division by Zero . 11
3.3 KS-LC–3 Use of Libraries that were not Reviewed 13
3.4 KS-LC–4 Unclear Calculation of Blinder Generator 14
3.5 KS-LC–5 Warnings in Dependencies . 16
3.6 KS-LC–6 Incorrect Error Handling . 17
3.7 KS-LC–7 Confusing Names . 19
3.8 KS-LC–8 No Secure Policy . 20
3.9 KS-LC–9 Consider Throwing Error Instead of Skip Validation 21
3.10 KS-LC–10 Duplicate Code . 23
3.11 KS-LC–11 Examples in README.md are Outdated 27

4 METHODOLOGY 29
4.1 Kickoff . 29
4.2 Ramp-up . 29
4.3 Review . 29

4.3.1 Code Review . 30
4.3.2 Cryptography . 30
4.3.3 Technical Specification Matching . 30

4.4 Reporting . 31
4.5 Verify . 31

5 VULNERABILITY SCORING SYSTEM 32
5.1 Severity . 32
5.2 Impact . 33

© 2024 Nagravision Sàrl / All Rights Reserved.
Public

Page 2 of 37

Lit Protocol | Secure Code Review of BLS and Gennaro-DKG Libraries
February 15, 2024

5.3 Likelihood . 33

6 CONCLUSION 34

RECIPIENT CONTACTS 35

DOCUMENT HISTORY 36

BIBLIOGRAPHY 37

LIST OF FIGURES

Figure 1 Findings Ranked by Severity. 4

LIST OF TABLES

Table 1 Overall Severity Computation . 32

© 2024 Nagravision Sàrl / All Rights Reserved.
Public

Page 3 of 37

Lit Protocol | Secure Code Review of BLS and Gennaro-DKG Libraries
February 15, 2024

1. EXECUTIVE SUMMARY

Lit Protocol engaged Kudelski Security to perform a secure code assessment of two cryp-
tographic libraries implemented in Rust: blsful and gennaro-dkg. The assessment was
conducted remotely by the Kudelski Security Team. Testing took place between 05.10.2023
and 24.11.2023, and focused on the following objectives:

• Provide the customer with an assessment of their overall security posture and any risks
that were discovered with both cryptographic libraries.

• To provide a professional opinion on the maturity, adequacy, and efficiency of the security
measures that are in place.

• To identify potential issues and include improvement recommendations based on the re-
sult of our tests.

1.1. Key Findings

The following are the major themes and issues identified during the testing period. These, along
with other items, within the findings section, should be prioritized for remediation to reduce the
risk they pose.

• Lack of input control.

• Secret keys and commitments can be created from unverified array of bytes.

• Risk of division by zero.

Fuzzing provided the following results:

• Encryption of empty message makes blsful crash. (fuzzing result)

• Uncontrolled inputs on public functions from be bytes and from le bytes result in
crashes. (fuzzing result)

It is important to highlight that both libraries blsful and gennaro-dkg are only perform math-
ematical computations of the different schemes implemented. The communication between
parties or the secure storage of the keys was not provided.

0 1 2 3 4 5 6 7 8 9

Informational

Low

Medium

High

Critical 0

0

1

1

9

Figure 1. Findings Ranked by Severity.

© 2024 Nagravision Sàrl / All Rights Reserved.
Public

Page 4 of 37

Lit Protocol | Secure Code Review of BLS and Gennaro-DKG Libraries
February 15, 2024

2. PROJECT SUMMARY

This report summarizes the engagement, tests performed, and findings. It also contains de-
tailed descriptions of the discovered vulnerabilities, steps the Kudelski Security team took to
identify and validate each issue, as well as any applicable recommendations for remedia-
tion.

2.1. Context

blsful implements three instances of the digital signature BLS:

• the traditional digital signature,

• the aggregated signature

• and the multisignature.

This library also proposes implementations of:

• the public key encryption scheme ElGamal,

• a timelock encryption from threshold BLS scheme,

• a signcryption scheme and

• a proof of knowledge scheme.

The second library implements the Distributed Key Generation algorithm named Gennaro.

2.2. Scope

The scope consisted of all Rust files in the following folders:

• blsful/scr [1]

◦ Commit hash : 7555c49aa1844446b58c90876cb387868d8a7d86

◦ BLS Signature Scheme

• gennaro-dkg/src [2]

◦ Commit hash : 55b928d049e4d9fc8750790c0d53c4654bf4fd09

◦ gennaro-dkg

A re-review was performed on 03.01.2024 on the following Commit hashes:

• blsful/scr [1]

◦ Commit hash : d2bd89c3183915abc36c2910e09cb770831f4a7d

• gennaro-dkg/src [2]

◦ Commit hash : 1c15242b3f833c0fe42f36c3f623f2c6d8bc64b1

© 2024 Nagravision Sàrl / All Rights Reserved.
Public

Page 5 of 37

https://github.com/mikelodder7/blsful/tree/main
https://github.com/mikelodder7/gennaro-dkg

Lit Protocol | Secure Code Review of BLS and Gennaro-DKG Libraries
February 15, 2024

Follow-up

After the initial report, Lit Protocol addressed the vulnerabilities and weaknesses in the following
codebase revision:

• blsful/scr [1]

◦ Commit hash : d2bd89c3183915abc36c2910e09cb770831f4a7d

• gennaro-dkg/src [2]

◦ Commit hash : 1c15242b3f833c0fe42f36c3f623f2c6d8bc64b1

2.3. Remarks

During the code review, the following positive observations were noted regarding the scope of
the engagement:

• Code was well written by developers that had good notions of secure implementation
such as randomness implementation.

• Tests were also provided as part of the project, which is convenient for better understand-
ing how the library works and useful for elaborating scenarios and validating findings.

• Finally, we had regular and very enriching technical exchanges on various topics.

2.4. Fuzzing

During the time of the audit, Kudelski Security performed fuzzing on some parts of the code
that plays a crucial role in the libraries to uncover bugs, vulnerabilities, or weaknesses that
might not be found through traditional testing methods. The fuzzing has been executed on the
following schemes:

• Signcryption

• BLS digital signature

• BLS multisignature

• BLS aggregated signature

• ElGamal encryption scheme

• Timelock encryption scheme

Fuzzing executed by Kudelski Security provided the following results:

• Encryption of empty message makes blsful crash.

• Uncontrolled inputs on public functions from be bytes and from le bytes result in
crashes.

Fuzzing is not by default part of a Secure Code Review, but it can be performed when time and
quality of documentation allow for it.

© 2024 Nagravision Sàrl / All Rights Reserved.
Public

Page 6 of 37

Lit Protocol | Secure Code Review of BLS and Gennaro-DKG Libraries
February 15, 2024

2.5. Test Coverage

Both libraries were provided tests and Kudelski Security checked the test coverage of both
libraries.

• blsful reaches a test coverage of 52.07%.

• gennaro-dkg reaches a test coverage of 66.37%.

2.6. Additional Note

It is important to notice that, although we did our best in our analysis, no code audit assessment
is per se guarantee of absence of vulnerabilities. Our effort was constrained by resource and
time limits, along with the scope of the agreement.

In assessing the severity of some of the findings we identified, we kept in mind both the ease
of exploitability and the potential damage caused by an exploit. In the specific case of this
cryptographic libraries, we focused on logic, randomness, secret information leaks.

While assessing the severity of the findings, we considered the impact, ease of exploitability,
and the probability of attack. This is a solid baseline for severity determination. Information
about the severity ratings can be found in Section 5 of this document.

© 2024 Nagravision Sàrl / All Rights Reserved.
Public

Page 7 of 37

Lit Protocol | Secure Code Review of BLS and Gennaro-DKG Libraries
February 15, 2024

3. FINDINGS

The Findings section provides detailed information on each of the findings, including methods
of discovery, explanation of severity determination, recommendations, and applicable refer-
ences.

The following table provides an overview of the findings.

SEVERITY TITLE STATUS

KS-LC-1 Medium Missing Input Sanitization Resolved

KS-LC-2 Low Division by Zero Resolved

KS-LC-3 Informational Use of Libraries that were not Reviewed Acknowl-
edged

KS-LC-4 Informational Unclear Calculation of Blinder Generator Acknowl-
edged

KS-LC-5 Informational Warnings in Dependencies Acknowl-
edged

KS-LC-6 Informational Incorrect Error Handling Resolved

KS-LC-7 Informational Confusing Names Resolved

KS-LC-8 Informational No Secure Policy Resolved

KS-LC-9 Informational Consider Throwing Error Instead of Skip
Validation

Acknowl-
edged

KS-LC-10 Informational Duplicate Code Acknowl-
edged

KS-LC-11 Informational Examples in README.md are Outdated Acknowl-
edged

© 2024 Nagravision Sàrl / All Rights Reserved.
Public

Page 8 of 37

Lit Protocol | Secure Code Review of BLS and Gennaro-DKG Libraries
February 15, 2024

3.1. KS-LC–1 Missing Input Sanitization

Overall Severity: MEDIUM

Status: Resolved

Impact Likelihood

MEDIUM MEDIUM

Description

In the blsful cryptographic library, the public functions from le bytes and from be bytes
allow users to convert an array of bytes into a secret key or commitment for the proving proce-
dure. However, no input sanitization is performed on the input array before conversion. Thus,
the array of bytes can be zero or not a valid encoding of a secret key or commitment at all. Zero
keys are not allowed for BLS or El-Gamal.

Additionally, the Gennaro DKG Documentation’s main page presents contains asserts to check
if the sampled shares are not zero. This seems to further suggests that such values should be
discarded when sampled.

Impact

For secret keys generation, secret keys or shares generated as 0 are insecure, because they
can easily be tested for and thus identified and used by a malicious entity. Additionally, other
keys with insufficient entropy can be created.

For the commitment creation, the security impact of this finding is decreased by the fact that,
later in the proving procedure, it verifies that the commitment is not equal to 0. However, the
only requirement is that the size of the array bytes is 32. This is the reason why fuzzing
were used to create commitment using random array of bytes, and it demonstrated that lack of
verification for the input makes the proving procedure crash. In the worst case scenario, this
could result in a Denial of Service.

Evidence

67 /// Convert a big-endian representation of the secret key.
68 pub fn from_be_bytes(bytes: &[u8; SECRET_KEY_BYTES]) -> CtOption<

Self> {
69 scalar_from_be_bytes::<C, SECRET_KEY_BYTES>(bytes).map(Self)
70 }
71

72 /// Convert a little-endian representation of the secret key.
73 pub fn from_le_bytes(bytes: &[u8; SECRET_KEY_BYTES]) -> CtOption<

Self> {
74 scalar_from_le_bytes::<C, SECRET_KEY_BYTES>(bytes).map(Self)
75 }

Conversion with no input sanitization in blsful/src/secret key.rs.

© 2024 Nagravision Sàrl / All Rights Reserved.
Public

Page 9 of 37

Lit Protocol | Secure Code Review of BLS and Gennaro-DKG Libraries
February 15, 2024

164 /// Convert a big-endian representation of the secret key.
165 pub fn from_be_bytes(bytes: &[u8; SECRET_KEY_BYTES]) -> CtOption<

Self> {
166 scalar_from_be_bytes::<C, SECRET_KEY_BYTES>(bytes).map(Self)
167 }
168

169 /// Convert a little-endian representation of the secret key.
170 pub fn from_le_bytes(bytes: &[u8; SECRET_KEY_BYTES]) -> CtOption<

Self> {
171 scalar_from_le_bytes::<C, SECRET_KEY_BYTES>(bytes).map(Self)
172 }

Conversion with no input sanitization in blsful/src/proof commitment.rs.

217 /// Convert a big-endian representation of the secret key.
218 pub fn from_be_bytes(bytes: &[u8; SECRET_KEY_BYTES]) -> CtOption<

Self> {
219 scalar_from_be_bytes::<C, SECRET_KEY_BYTES>(bytes).map(Self)
220 }
221

222 /// Convert a little-endian representation of the secret key.
223 pub fn from_le_bytes(bytes: &[u8; SECRET_KEY_BYTES]) -> CtOption<

Self> {
224 scalar_from_le_bytes::<C, SECRET_KEY_BYTES>(bytes).map(Self)
225 }

Conversion with no input sanitization in blsful/src/proof commitment.rs.

Affected Resources

• blsful/src/secret key.rs lines 67-75

• blsful/src/proof commitment.rs lines 165-172 and 217-225

Recommendation

Even if the primary role of these functions is to perform type conversion, it is still recommended
to discard unsuitable values here. This can prevent further security issues occurring in case
of an unintended use of the library functions. While this occurs with negligible probability,
rejecting zero as the secret key/ the identity as the public key is recommended, which is done
in the code. Verify that the array bytes is not 0 or representing a scalar too large. An additional
recommendation could be to check the minimal and maximal length of the input array for both
functions. This would ensure that the key is generated from a long enough array of bytes.

References

• CWE-20: Improper Input Validation

© 2024 Nagravision Sàrl / All Rights Reserved.
Public

Page 10 of 37

https://cwe.mitre.org/data/definitions/20.html

Lit Protocol | Secure Code Review of BLS and Gennaro-DKG Libraries
February 15, 2024

3.2. KS-LC–2 Division by Zero

Overall Severity: LOW

Status: Resolved

Impact Likelihood

LOW LOW

Description

One of the steps in the [2] protocol requires the participants to perform a Lagrange interpolation.
In order to reconstruct a secret by Lagrange interpolation, all the shares of the parties must be
distinct from each other. This check is not performed.

Impact

When performing division by xi−xj , this will effectively be a division by zero and the application
will crash.

Evidence

211 fn lagrange_interpolation(
212 share: G::Scalar,
213 shares_ids: &[G::Scalar],
214 index: usize,
215) -> G::Scalar {
216 let mut basis = G::Scalar::ONE;
217 for (j, x_j) in shares_ids.iter().enumerate() {
218 if j == index {
219 continue;
220 }
221 let denominator = *x_j - shares_ids[index];
222 basis *= *x_j * denominator.invert().unwrap();
223 }
224 basis * share
225 }

gennaro-dkg/src/participant.rs. The denominator is not checked that it is different
from the zero field element before inversion.

Affected Resources

• gennaro-dkg/src/participant.rs lines 211-225

• gennaro-dkg/src/participant.rs line 90

Recommendation

Check that the participants shares are distinct or that the denominator is not zero, and throw
a suitable error message.

© 2024 Nagravision Sàrl / All Rights Reserved.
Public

Page 11 of 37

Lit Protocol | Secure Code Review of BLS and Gennaro-DKG Libraries
February 15, 2024

References

• CWE-369: Divide By Zero

© 2024 Nagravision Sàrl / All Rights Reserved.
Public

Page 12 of 37

https://cwe.mitre.org/data/definitions/369.html

Lit Protocol | Secure Code Review of BLS and Gennaro-DKG Libraries
February 15, 2024

3.3. KS-LC–3 Use of Libraries that were not Reviewed

Overall Severity: INFORMATIONAL

Status: Acknowledged

Description

The source code uses some dependencies implementing sensitive cryptographical operations
that have not been reviewed or audited. In particular, the gennaro-dkg and blsful imple-
mentations rely on the Rust library vsss-rs.

Impact

This library is used for important computations. Therefore, if vulnerabilities are discovered in
vsss-rs, these could impact security.

Evidence

The following libraries come with the the following disclaimers in their documentation.

vsss-rs

The documentation of vsss-rs (see References) mentions in bold characters: “This imple-
mentation has not been reviewed or audited. Use at your own risk.”

ChaCha20

The documentation for rand:ChaChaRng (see References) specifies the following:

A random number generator that uses the ChaCha20 algorithm [1].

The ChaCha algorithm is widely accepted as suitable for cryptographic purposes,
but this implementation has not been verified as such. Prefer a generator like OsRng
that defers to the operating system for cases that need high security.

[1]: D. J. Bernstein, ChaCha, a variant of Salsa20

Affected Resources

• blsful

• gennaro-dkg

Recommendation

When possible, replace such modules with audited and reviewed dependencies. However,
such alternatives might not exist.

References

• rand::ChaChaRng documentation

• vsss-rs

© 2024 Nagravision Sàrl / All Rights Reserved.
Public

Page 13 of 37

https://docs.rs/rand/0.3.23/rand/struct.ChaChaRng.html
https://github.com/mikelodder7/vsss-rs

Lit Protocol | Secure Code Review of BLS and Gennaro-DKG Libraries
February 15, 2024

3.4. KS-LC–4 Unclear Calculation of Blinder Generator

Overall Severity: INFORMATIONAL

Status: Acknowledged

Description

The generator point blinder is created in function Parameters::new using the bytes of
message generator as seed. This deterministic approach will effectively sample the bytes
0xBA2C15C19DEDDC61E5BA61CC6A3AC2207D6043063B96C178DC93B0D1DDCD1A1A to be
interpreted as a point. From the protocol description, all parties must have the same generator
for the blinding point, however it is not clear if this must be sampled deterministically in this man-
ner. Moreover, the comment above the function describes a ”random blinder generator”,
which makes it unclear if it should be sampled randomly every time or not.

Impact

While there is no direct evidence of security issues sampling the blinder generator this way, the
implications of using the same generator point for different sessions are unknown.

Evidence

27 impl<G: Group + GroupEncoding + Default> Parameters<G> {
28 /// Create regular parameters with the message_generator as the

default generator
29 /// and a random blinder_generator
30 pub fn new(threshold: NonZeroUsize, limit: NonZeroUsize) ->

Self {
31 let message_generator = G::generator();
32 let mut seed = [0u8; 32];
33 seed.copy_from_slice(&message_generator.to_bytes().as_ref()

[0..32]);
34 let rng = rand_chacha::ChaChaRng::from_seed(seed);
35 Self {
36 threshold: threshold.get(),
37 limit: limit.get(),
38 message_generator: G::generator(),
39 blinder_generator: G::random(rng),
40 }
41 }

Generation of blinder generator in Parameters::new.

Affected Resources

• gennaro-dkg/src/parameters.rs lines 30-41

© 2024 Nagravision Sàrl / All Rights Reserved.
Public

Page 14 of 37

Lit Protocol | Secure Code Review of BLS and Gennaro-DKG Libraries
February 15, 2024

Recommendation

Seed rand chacha::ChaChaRng with true entropy provided by the hardware, or any other
suitably cryptographic source. If, instead, blinder generator is meant to be a hard-coded
constant, then this might be a deviation from the protocol.

References

• CWE-337: Predictable Seed in Pseudo-Random Number Generator (PRNG)

• [2]

© 2024 Nagravision Sàrl / All Rights Reserved.
Public

Page 15 of 37

https://cwe.mitre.org/data/definitions/337.html

Lit Protocol | Secure Code Review of BLS and Gennaro-DKG Libraries
February 15, 2024

3.5. KS-LC–5 Warnings in Dependencies

Overall Severity: INFORMATIONAL

Status: Acknowledged

Description

cargo audit detected the following 2 allowed warnings in the dependencies.

Impact

Generally, vulnerabilities in dependencies could be exploited to compromise the security of the
system. In this case, however, they seem to have little to no impact on security.

Evidence

Crate: serde_cbor
Version: 0.11.2
Warning: unmaintained
Title: serde_cbor is unmaintained
Date: 2021-08-15
ID: RUSTSEC-2021-0127
URL: https://rustsec.org/advisories/RUSTSEC-2021-0127

Crate: xsalsa20poly1305
Version: 0.7.1
Warning: unmaintained
Title: crate has been renamed to ‘crypto_secretbox‘
Date: 2023-05-16
ID: RUSTSEC-2023-0037
URL: https://rustsec.org/advisories/RUSTSEC-2023-0037

Affected Resources

• gennaro-dkg

Recommendation

Follow the recommendations of cargo audit. If suitable, replace serde cbor with either
ciborium or minicbor as suggested by the author here. Additionally, consider renaming
xsalsa20poly1305 to crypto secretbox.

References

N/A

© 2024 Nagravision Sàrl / All Rights Reserved.
Public

Page 16 of 37

https://rustsec.org/advisories/RUSTSEC-2021-0127

Lit Protocol | Secure Code Review of BLS and Gennaro-DKG Libraries
February 15, 2024

3.6. KS-LC–6 Incorrect Error Handling

Overall Severity: INFORMATIONAL

Status: Resolved

Description

Different functions in the code panic either by calling it explicitly panic! or by performing
an operation that can panic, such as accessing an array out of bounds. Explicit error handling
(such as using Result) should be preferred instead of panic!, as outlined in the Programming
Rules to Develop Secure Applications with Rust.

For example, the function try from, which is called when performing the signing procedure
of BLS multisignature, takes as input an array of bytes representing the signature of different
parties. This function performs a loop on the inputs starting with the index 1 (e.g. for s in
&sigs[1..]) without checking that the length of the array sigs.

Impact

Instructions that can cause the code to panic at runtime may cause the application to crash
unexpectedly. In the case of the index out of bound example, users could execute the signing
procedure for the BLS multisignature for only one party. This will make the execution unexpect-
edly panic and in the worst case scenarios create a Denial of Service.

Evidence

Possible Array out of Bounds

83 fn try_from(sigs: &[Signature<C>]) -> Result<Self, Self::Error> {
84 let mut g = <C as Pairing>::Signature::identity();
85 for s in &sigs[1..] {
86 if !s.same_scheme(&sigs[0]) {
87 return Err(BlsError::InvalidSignatureScheme);
88 }
89 let ss = match s {
90 Signature::Basic(sig) => sig,
91 Signature::MessageAugmentation(_) => {
92 return Err(BlsError::InvalidSignatureScheme);
93 }
94 Signature::ProofOfPossession(sig) => sig,
95 };
96 g += ss;
97 }
98 match sigs[0] {
99 Signature::Basic(s) => Ok(Self::Basic(g + s)),

100 Signature::MessageAugmentation(s) => Ok(Self::
MessageAugmentation(g + s)),

101 Signature::ProofOfPossession(s) => Ok(Self::ProofOfPossession
(g + s)),

102 }

© 2024 Nagravision Sàrl / All Rights Reserved.
Public

Page 17 of 37

Lit Protocol | Secure Code Review of BLS and Gennaro-DKG Libraries
February 15, 2024

103 }

Index out of Bounds blsful/src/multi signature.rs

Explicit panic!

79 _ => panic!("Signature::conditional_select: mismatched
variants"),

In blsful/src/aggregate signature.rs the function conditional select panics.

Affected Resources

• blsful/src/aggregate signature.rs line 79

• blsful/src/multi signature.rs line 79

• blsful/src/proof commitment.rs line 85

• blsful/src/proof of knowledge.rs line 112

• blsful/src/signature share.rs line 66

• blsful/src/signature.rs line 79

• blsful/src/multi signature.rs line 85

Recommendation

Remove instructions that can cause the code to panic like unwrap or panic!. Always test
values of type Result or Option before using them or unwrapping them. Refer to the Rust
documentation for the idiomatic way of handling errors. Validation of inputs plays also a pivotal
role, for example the try from function in file blsful/src/multi signature.rs needs to
perform a verification that at least two signatures are given as inputs to the function. In other
words, ensure that the array of bytes sigs has length at least equal to two. By checking this,
the risk of index out of bounds is avoided. Additionally, a multisignature should involve at least
two parties (otherwise, a traditional digital signature would have sufficed.

References

• Option & unwrap, Rust by Example

• To panic! or Not to panic!, The Rust Programming language

• CWE-703: Improper Check or Handling of Exceptional Conditions

• ANSSI Guidelines - Programming Rules to Develop Secure Applications with Rust, Sec-
tion 4.4

© 2024 Nagravision Sàrl / All Rights Reserved.
Public

Page 18 of 37

https://doc.rust-lang.org/rust-by-example/error/option_unwrap.html
https://doc.rust-lang.org/book/ch09-03-to-panic-or-not-to-panic.html
https://cwe.mitre.org/data/definitions/703.html
https://www.ssi.gouv.fr/uploads/2020/06/anssi-guide-programming_rules_to_develop_secure_applications_with_rust-v1.0.pdf
https://www.ssi.gouv.fr/uploads/2020/06/anssi-guide-programming_rules_to_develop_secure_applications_with_rust-v1.0.pdf

Lit Protocol | Secure Code Review of BLS and Gennaro-DKG Libraries
February 15, 2024

3.7. KS-LC–7 Confusing Names

Overall Severity: INFORMATIONAL

Status: Resolved

Description

Various files in gennaro-main-dkg use single-letter variable names such as “u” or “p”.

Impact

Using descriptive name for variables and function can help with understanding the source code
and debugging. This reduces the risk of accidentally introducing vulnerabilities during develop-
ment.

Evidence

83 pub fn serialize<S: Serializer>(input: &Arc<Mutex<Protected>>, s: S
) -> Result<S::Ok, S::Error> {

84 let mut p = input
85 .lock()
86 .map_err(|_e| ser::Error::custom("unable to acquire lock".

to_string()))?;
87 let u = p
88 .unprotect()
89 .ok_or_else(|| ser::Error::custom("invalid secret"))?;
90 u.as_ref().serialize(s)
91 }

Single-letter variable names in gennaro-dkg/src/secret share.rs.

Affected Resources

• gennaro-dkg/src/secret share.rs

• gennaro-dkg/src/protected.rs

• gennaro-dkg/src/lib.rs

• gennaro-dkg/src/participant/round4.rs

Recommendation

Rename the concerned variables and functions such that their role is defined clearer. Refer to
Fowler, M. (2019) for general guidelines on refactoring.

References

• Fowler, M. (2019) Refactoring: Improving the Design of Existing Code. 2nd edn. Addison-
Wesley

© 2024 Nagravision Sàrl / All Rights Reserved.
Public

Page 19 of 37

Lit Protocol | Secure Code Review of BLS and Gennaro-DKG Libraries
February 15, 2024

3.8. KS-LC–8 No Secure Policy

Overall Severity: INFORMATIONAL

Status: Resolved

Description

The source code repository contains no instructions for how to report a security vulnerability
regarding the repositories and the website, nor any security contacts.

Impact

If anyone discovers a vulnerability, they might not know who to contact in order to get it ad-
dressed before the vulnerability is exploited.

Recommendation

Create a SECURITY.md file in the root directory with all the necessary information. See the
references below on how to proceed.

References

• Github - Adding a security policy

• Security Policy Generator

© 2024 Nagravision Sàrl / All Rights Reserved.
Public

Page 20 of 37

https://docs.github.com/en/code-security/getting-started/adding-a-security-policy-to-your-repository
https://securitytxt.org/

Lit Protocol | Secure Code Review of BLS and Gennaro-DKG Libraries
February 15, 2024

3.9. KS-LC–9 Consider Throwing Error Instead of Skip Validation

Overall Severity: INFORMATIONAL

Status: Acknowledged

Description

In multiple places across the rounds in gennaro-dkg, the relevant data is stored in a buffer
and parsed using a loop. In some cases, the loop is interrupted using a continue. This is
justified in some cases. For example, a party might not need to validate the input corresponding
to its own id. However, in other cases, aborting the protocol or throwing an error might be a
more suitable response.

Impact

By continuing the protocol where complaining or throwing an error might be more suitable, the
state of the participants might end up in an invalid. Concealing any irregularities in received
messages may impede the ability to identify and investigate potential malicious activities, hin-
dering effective recovery efforts.

Evidence

99 // If not using the same generator then its a problem
100 if bdata.blinder_generator != self.components.pedersen_verifier_set

.blinder_generator()
101 || bdata.message_generator
102 != self.components.pedersen_verifier_set.secret_generator()
103 || bdata.pedersen_commitments.len() != self.threshold
104 {
105 continue;
106 }

gennaro-dkg/src/participant/round2.rs. If something went wrong with the protocol,
the user should be notified.

50 if !self.round1_p2p_data.contains_key(id) {
51 // How would this happen?
52 // Round 2 removed all invalid participants
53 // Round 3 sent echo broadcast to double check valid

participants
54 self.valid_participant_ids.remove(id);
55 continue;
56 }
57

gennaro-dkg/src/participant/round4.rs. If this edge case is unreachable, as the
comment suggests, perhaps throwing an error might be a more suitable response.

© 2024 Nagravision Sàrl / All Rights Reserved.
Public

Page 21 of 37

Lit Protocol | Secure Code Review of BLS and Gennaro-DKG Libraries
February 15, 2024

Affected Resources

• gennaro-dkg/src/participant/round4.rs Line 100

• gennaro-dkg/src/participant/round4.rs Lines 50, 57

• gennaro-dkg/src/participant/round5.rs Lines 41, 48

Recommendation

Consider either throwing a suitable error OR let the end users know of irregularities in the
messages received in the protocol.

© 2024 Nagravision Sàrl / All Rights Reserved.
Public

Page 22 of 37

Lit Protocol | Secure Code Review of BLS and Gennaro-DKG Libraries
February 15, 2024

3.10. KS-LC–10 Duplicate Code

Overall Severity: INFORMATIONAL

Status: Acknowledged

Description

Both libraries, gennaro-dkg and blsful, contain duplicate code. For example, in the case
of gennaro-dkg, the sanity checks for values such as broadcast data and p2p data are
duplicated all throughout the round1.rs · round5.rs files.

Impact

Generally, duplicate functionality could diverge as development progressses, causing unex-
pected behavior and introducing vulnerabilities.

As gennaro-dkg is a library implementing an academic paper, the code logic is not be ex-
pected to evolve. However, assume another developer wants to extends this library in the
future (with network functionality and complaint mechanisms). In this case, having duplicated
code could accidentally introduce divergent code.

Evidence

Duplicate Code in gennaro dkg

As an example, broadcast data is validated in round2.rs, round4.rs and round5.rs
in (nearly) the same way. The functionality could be regrouped under an auxiliary function
validate broadcast data, which takes into account the current round and the threshold to
validate against.

39 if broadcast_data.is_empty() {
40 return Err(Error::RoundError(
41 Round::Two.into(),
42 "Missing broadcast data from other participants".to_string(),
43));
44 }
45 if p2p_data.is_empty() {
46 return Err(Error::RoundError(
47 Round::Two.into(),
48 "Missing peer-to-peer data from other participants".to_string()

,
49));
50 }
51 // Allow -1 since including this participant
52 // This round doesn’t expect this participant data included in the

broadcast_data map
53 if broadcast_data.len() < self.threshold - 1 {
54 return Err(Error::RoundError(
55 Round::Two.into(),
56 format!(

© 2024 Nagravision Sàrl / All Rights Reserved.
Public

Page 23 of 37

Lit Protocol | Secure Code Review of BLS and Gennaro-DKG Libraries
February 15, 2024

57 "Not enough secret_participant data. Expected {}, received {}
",

58 self.threshold,
59 broadcast_data.len()
60),
61));
62 }

gennaro-dkg/src/participant/round2.rs.

Duplicate Code in blsful

In blsful, the functions that cast the type SecretKey to an array of bytes or the other way
around are duplicated in different parts of the code.

For example, the following code:

147 /// The commitment secret raw value
148 #[serde(serialize_with = "traits::scalar::serialize::<C, _>")]
149 #[serde(deserialize_with = "traits::scalar::deserialize::<C, _>")

]
150 pub <<C as Pairing>::PublicKey as Group>::Scalar,
151);
152

153 impl<C: BlsSignatureImpl> ProofCommitmentSecret<C> {
154 /// Get the big-endian byte representation of this key
155 pub fn to_be_bytes(&self) -> [u8; SECRET_KEY_BYTES] {
156 scalar_to_be_bytes::<C, SECRET_KEY_BYTES>(self.0)
157 }
158

159 /// Get the little-endian byte representation of this key
160 pub fn to_le_bytes(&self) -> [u8; SECRET_KEY_BYTES] {
161 scalar_to_le_bytes::<C, SECRET_KEY_BYTES>(self.0)
162 }
163

164 /// Convert a big-endian representation of the secret key.
165 pub fn from_be_bytes(bytes: &[u8; SECRET_KEY_BYTES]) ->

CtOption<Self> {
166 scalar_from_be_bytes::<C, SECRET_KEY_BYTES>(bytes).map(Self)
167 }
168

169 /// Convert a little-endian representation of the secret key.
170 pub fn from_le_bytes(bytes: &[u8; SECRET_KEY_BYTES]) ->

CtOption<Self> {
171 scalar_from_le_bytes::<C, SECRET_KEY_BYTES>(bytes).map(Self)
172 }

blsful/src/proof commitment.rs.

is duplicated in the file blsful/src/secret key.rs :

57 /// The commitment secret raw value

© 2024 Nagravision Sàrl / All Rights Reserved.
Public

Page 24 of 37

Lit Protocol | Secure Code Review of BLS and Gennaro-DKG Libraries
February 15, 2024

58 #[serde(serialize_with = "traits::scalar::serialize::<C, _>")]
59 #[serde(deserialize_with = "traits::scalar::deserialize::<C, _>")]
60 pub <<C as Pairing>::PublicKey as Group>::Scalar,
61);
62

63 impl<C: BlsSignatureImpl> ProofCommitmentSecret<C> {
64 /// Get the big-endian byte representation of this key
65 pub fn to_be_bytes(&self) -> [u8; SECRET_KEY_BYTES] {
66 scalar_to_be_bytes::<C, SECRET_KEY_BYTES>(self.0)
67 }
68

69 /// Get the little-endian byte representation of this key
70 pub fn to_le_bytes(&self) -> [u8; SECRET_KEY_BYTES] {
71 scalar_to_le_bytes::<C, SECRET_KEY_BYTES>(self.0)
72 }
73

74 /// Convert a big-endian representation of the secret key.
75 pub fn from_be_bytes(bytes: &[u8; SECRET_KEY_BYTES]) -> CtOption<

Self> {
76 scalar_from_be_bytes::<C, SECRET_KEY_BYTES>(bytes).map(Self)
77 }
78

79 /// Convert a little-endian representation of the secret key.
80 pub fn from_le_bytes(bytes: &[u8; SECRET_KEY_BYTES]) -> CtOption<

Self> {
81 scalar_from_le_bytes::<C, SECRET_KEY_BYTES>(bytes).map(Self)
82 }

blsful/src/secret key.rs.

Affected Resources

• gennaro-dkg/src/participant/round1.rs

• gennaro-dkg/src/participant/round2.rs

• gennaro-dkg/src/participant/round3.rs

• gennaro-dkg/src/participant/round4.rs

• gennaro-dkg/src/participant/round5.rs

• blsful/src/secret key.rs

• blsful/src/proof commitment.rs

Recommendation

Refactor the code base such that the duplicated sanity checks are found in a single place. Refer
to Fowler, M. (2019) for general guidelines on refactoring.

© 2024 Nagravision Sàrl / All Rights Reserved.
Public

Page 25 of 37

Lit Protocol | Secure Code Review of BLS and Gennaro-DKG Libraries
February 15, 2024

References

• MITRE (2018) CWE-1041: Use of Redundant Code. Available at: here (Accessed: 16
November 2023).

• Fowler, M. (2019) Refactoring: Improving the Design of Existing Code. 2nd edn. Addison-
Wesley

© 2024 Nagravision Sàrl / All Rights Reserved.
Public

Page 26 of 37

https://cwe.mitre.org/data/definitions/1041.html

Lit Protocol | Secure Code Review of BLS and Gennaro-DKG Libraries
February 15, 2024

3.11. KS-LC–11 Examples in README.md are Outdated

Overall Severity: INFORMATIONAL

Status: Open

Description

The examples provided in the repository for blsful library do not reflect functionalities for the
latest version of the library. In particular the examples for creating new secret key seems to use
methods not present in the library to create new objects, in addition to missing type annotations
for SecretKey.

Impact

There is no direct security impact, but wrong information of how to use the library could confuse
the users.

Evidence

1 error[E0282]: type annotations needed for ‘blsful::SecretKey<C>‘
2 --> src/main.rs:62:9
3 |
4 62 | let sk = SecretKey::random(rand_core::OsRng);
5 | ˆˆ
6 |
7 help: consider giving ‘sk‘ an explicit type, where the type for

type parameter ‘C‘ is specified
8 |
9 62 | let sk: blsful::SecretKey<C> = SecretKey::random(

rand_core::OsRng);
10 | ++++++++++++++++++++++
11 error[E0599]: no function or associated item named ‘new‘ found for

struct ‘blsful::ProofOfPossession‘ in the current scope
12 --> src/main.rs:64:34
13 |
14 64 | let pop = ProofOfPossession::new(&sk).expect("a proof of

possession");
15 | ˆˆˆ function or associated

item not found in ‘ProofOfPossession<_>‘
16 error[E0599]: no function or associated item named ‘hash‘ found for

struct ‘blsful::SecretKey‘ in the current scope
17 --> src/main.rs:66:25
18 |
19 66 | let sk = SecretKey::hash(b"seed phrase");
20 | ˆˆˆˆ function or associated item

not found in ‘SecretKey<_>‘
21 error[E0599]: no variant or associated item named ‘new‘ found for

enum ‘Signature‘ in the current scope
22 --> src/main.rs:69:26

© 2024 Nagravision Sàrl / All Rights Reserved.
Public

Page 27 of 37

Lit Protocol | Secure Code Review of BLS and Gennaro-DKG Libraries
February 15, 2024

23 |
24 69 | let sig = Signature::new(&sk, b"

00000000-0000-0000-0000-000000000000").expect("a valid
signature");

25 | ˆˆˆ variant or associated item
not found in ‘Signature<_>‘

Errors compiling examples

Affected Resources

• blsful/README.md

Recommendation

README.md needs to be update with the latest guideline for the good use of the library

© 2024 Nagravision Sàrl / All Rights Reserved.
Public

Page 28 of 37

Lit Protocol | Secure Code Review of BLS and Gennaro-DKG Libraries
February 15, 2024

4. METHODOLOGY

For this engagement, Kudelski Security used a methodology that is described at high-level in
this section. This is broken up into the following phases.

4.1. Kickoff

The project was kicked off when all of the sales activities had been concluded. We set up a
kickoff meeting where project stakeholders were gathered to discuss the project as well as the
responsibilities of participants. During this meeting we verified the scope of the engagement
and discussed the project activities. It was an opportunity for both sides to ask questions
and get to know each other. By the end of the kickoff there was an understanding of the
following:

• Designated points of contact

• Communication methods and frequency

• Shared documentation

• Code and/or any other artifacts necessary for project success

• Follow-up meeting schedule, such as a technical walkthrough

• Understanding of timeline and duration

4.2. Ramp-up

Ramp-up consisted of the activities necessary to gain proficiency on the particular project.
This included the steps needed for gaining familiarity with the codebase and technological
innovations utilized, such as:

• Reviewing previous work in the area including academic papers

• Reviewing programming language constructs for the languages used in the code

• Researching common flaws and recent technological advancements

4.3. Review

The review phase is where a majority of the work on the engagement was performed. In this
phase we analyzed the project for flaws and issues that could impact the security posture. This
included an analysis of the architecture, a review of the code, and a specification matching to
match the architecture to the implemented code.

In this code audit, we performed the following tasks:

© 2024 Nagravision Sàrl / All Rights Reserved.
Public

Page 29 of 37

Lit Protocol | Secure Code Review of BLS and Gennaro-DKG Libraries
February 15, 2024

1. Security analysis and architecture review of the original protocol;

2. Review of the code written for the project;

3. Assessment of the cryptographic primitives used;

4. Compliance of the code with the provided technical documentation.

The review for this project was performed using manual methods and utilizing the experience
of the reviewer. No dynamic testing was performed, only the use of custom-built scripts and
tools were used to assist the reviewer during the testing. We discuss our methodology in more
detail in the following subsections.

4.3.1. Code Review

We analyzed the provided code, checking for issues related to the following categories:

1. general code safety and susceptibility to known issues;

2. poor coding practices and unsafe behavior;

3. leakage of secrets or other sensitive data through memory mismanagement;

4. susceptibility to misuse and system errors;

5. error management and logging.

This is a general and not comprehensive list, meant only to give an understanding of the issues
we have been looking for.

4.3.2. Cryptography

We analyzed the cryptographic primitives and components as well as their implementation. We
checked in particular:

1. matching of the proper cryptographic primitives to the desired cryptographic functionality
needed;

2. security level of cryptographic primitives and their respective parameters (key lengths,
etc.);

3. safety of the randomness generation in general as well as in the case of failure;

4. safety of key management;

5. assessment of proper security definitions and compliance to use cases;

6. checking for known vulnerabilities in the primitives used.

4.3.3. Technical Specification Matching

We analyzed the provided documentation and checked that the code matches the specification.
We checked for things such as:

1. proper implementation of the documented protocol phases.

2. proper error handling.

3. adherence to the protocol logical description.

© 2024 Nagravision Sàrl / All Rights Reserved.
Public

Page 30 of 37

Lit Protocol | Secure Code Review of BLS and Gennaro-DKG Libraries
February 15, 2024

4.4. Reporting

Kudelski Security delivered to Lit Protocol a preliminary report in PDF format that contained
an executive summary, technical details, and observations about the project, which is also the
general structure of the current final report.

The executive summary contains an overview of the engagement, including the number of find-
ings as well as a statement about our general risk assessment of the project as a whole.

In the report we not only point out security issues identified but also informational findings for
improvement categorized into several buckets:

1. Critical;

2. High;

3. Medium;

4. Low;

5. Informational.

The technical details are aimed more at developers, describing the issues, the severity ranking
and recommendations for mitigation.

As we performed the audit, we also identified issues that are not security related, but are gen-
eral best practices and steps, that can be taken to lower the attack surface of the project.

As an optional step, we can agree on the creation of a public report that can be shared and
distributed with a larger audience.

4.5. Verify

After the preliminary findings have been delivered, we verified the fixes applied by Lit Protocol.
After these fixes were verified, we updated the status of the finding in the report. The output of
this phase was the current, final report with any mitigated findings noted.

© 2024 Nagravision Sàrl / All Rights Reserved.
Public

Page 31 of 37

Lit Protocol | Secure Code Review of BLS and Gennaro-DKG Libraries
February 15, 2024

5. VULNERABILITY SCORING SYSTEM

Kudelski Security utilizes a custom approach when computing the vulnerability score, based
primarily on the Impact of the vulnerability and Likelihood of an attack.

Each metric is assigned a ranking of either low, medium or high, based on the criteria defined
in in Section 5.2 and Section 5.3. The overall severity score is then computed as described in
the next section.

5.1. Severity

Severity is the overall score of the finding, weakness or vulnerability as computed from Impact
and Likelihood. Other factors, such as availability of tools and exploits, number of instances of
the vulnerability and ease of exploitation might also be taken into account when computing the
final severity score.

IMPACT

LIKELIHOOD LOW MEDIUM HIGH

HIGH MEDIUM HIGH HIGH

MEDIUM LOW MEDIUM HIGH

LOW LOW LOW MEDIUM

Table 1. How to compute overall Severity from Impact and Likelihood. The final severity factor
might vary depending on a project’s specific context and risk factors.

• Critical The identified issue may be immediately exploitable, causing a strong and major
negative impact system-wide. They should be urgently remediated or mitigated.

• High The identified issue may be directly exploitable causing an immediate negative im-
pact on the users, data, and availability of the system for multiple users.

• Medium The identified issue is not directly exploitable but combined with other vulnera-
bilities may allow for exploitation of the system or exploitation may affect singular users.
These findings may also increase in severity in the future as techniques evolve.

• Low The identified issue is not directly exploitable but raises the attack surface of the
system. This may be through leaking information that an attacker can use to increase the
accuracy of their attacks.

• Informational Informational findings are best practice steps that can be used to harden
the application and improve processes. Informational findings are not assigned a severity
score and are classified as “Informational” instead.

© 2024 Nagravision Sàrl / All Rights Reserved.
Public

Page 32 of 37

Lit Protocol | Secure Code Review of BLS and Gennaro-DKG Libraries
February 15, 2024

5.2. Impact

The overall effect of the vulnerability against the system or organization based on the areas of
concern or affected components discussed with the client during the scoping of the engage-
ment.

• High The vulnerability has a severe effect on the company and systems or has an affect
within one of the primary areas of concern noted by the client.

• Medium It is reasonable to assume that the vulnerability would have a measurable affect
on the company and systems that may cause minor financial or reputational damage.

• Low There is little to no affect from the vulnerability being compromised. These vulnera-
bilities could lead to complex attacks or create footholds used in more severe attacks.

5.3. Likelihood

The likelihood of an attacker discovering a vulnerability, exploiting it, and obtaining a foothold
varies based on a variety of factors including compensating controls, location of the appli-
cation, availability of commonly used exploits, difficulty of exploitation and institutional knowl-
edge.

• High It is extremely likely that this vulnerability will be discovered and abused.

• Medium It is likely that this vulnerability will be discovered and abused by a skilled at-
tacker.

• Low It is unlikely that this vulnerability will be discovered or abused when discovered.

© 2024 Nagravision Sàrl / All Rights Reserved.
Public

Page 33 of 37

Lit Protocol | Secure Code Review of BLS and Gennaro-DKG Libraries
February 15, 2024

6. CONCLUSION

The objective of this secure code review was to evaluate whether there were any vulnerabilities
that would put the users of both libraries at risk.

The Kudelski Security Team identified 2 security issues: 1 medium risks and 1 lower risk. On
average, the effort needed to mitigate these risks is estimated as low.

In order to mitigate the risks posed by this engagement’s findings, the Kudelski Security Team
recommends applying the following best practices:

1. Improve function inputs verification

2. Explain the limitation of both libraries in terms of application

Kudelski Security remains at your disposal should you have any questions or need further
assistance.

Kudelski Security would like to thank Lit Protocol for their trust, help and support over the course
of this engagement and is looking forward to cooperating in the future.

© 2024 Nagravision Sàrl / All Rights Reserved.
Public

Page 34 of 37

Lit Protocol | Secure Code Review of BLS and Gennaro-DKG Libraries
February 15, 2024

RECIPIENT CONTACTS

NAME POSITION CONTACT INFORMATION

Mike Lodder Senior Software
Engineer

mike@litprotocol.com

© 2024 Nagravision Sàrl / All Rights Reserved.
Public

Page 35 of 37

mailto:mike@litprotocol.com

Lit Protocol | Secure Code Review of BLS and Gennaro-DKG Libraries
February 15, 2024

DOCUMENT HISTORY

VERSION DATE AUTHOR COMMENT

1.0 24.11.2023 Reviewer 1 First version with
findings

1.1 03.01.2024 Reviewer 2 Updated report with
re-review

© 2024 Nagravision Sàrl / All Rights Reserved.
Public

Page 36 of 37

Lit Protocol | Secure Code Review of BLS and Gennaro-DKG Libraries
February 15, 2024

BIBLIOGRAPHY

[1] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. In
Colin Boyd, editor, Advances in Cryptology — ASIACRYPT 2001, pages 514–532, Berlin,
Heidelberg, 2001. Springer Berlin Heidelberg.

[2] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure distributed
key generation for discrete-log based cryptosystems. Journal of Cryptology, 20(1):51–83,
2007.

© 2024 Nagravision Sàrl / All Rights Reserved.
Public

Page 37 of 37

	Document Properties
	Table of Contents
	List of Figures
	List of Tables
	Executive Summary
	Key Findings

	Project Summary
	Context
	Scope
	Remarks
	Fuzzing
	Test Coverage
	Additional Note

	Findings
	KS-LC–1 Missing Input Sanitization
	KS-LC–2 Division by Zero
	KS-LC–3 Use of Libraries that were not Reviewed
	KS-LC–4 Unclear Calculation of Blinder Generator
	KS-LC–5 Warnings in Dependencies
	KS-LC–6 Incorrect Error Handling
	KS-LC–7 Confusing Names
	KS-LC–8 No Secure Policy
	KS-LC–9 Consider Throwing Error Instead of Skip Validation
	KS-LC–10 Duplicate Code
	KS-LC–11 Examples in README.md are Outdated

	Methodology
	Kickoff
	Ramp-up
	Review
	Code Review
	Cryptography
	Technical Specification Matching

	Reporting
	Verify

	Vulnerability Scoring System
	Severity
	Impact
	Likelihood

	Conclusion
	Recipient Contacts
	Document History
	Bibliography

