# A circle has center on the side AB of the cyclic quadrilateral ABCD. The other three sides are tangent to the circle. # Prove that AD + BC = AB. let A, B, C, D = Point(); ABCD lies_on Circle(); let X [display = false] = intersection(bisector(BCD), bisector(CDA)) lies_on Segment(AB); let omega = Circle(X, dst(X, DC [display = false])); ?Segment((BC, CD, DA));