/********************************************************************** * * GEOS - Geometry Engine Open Source * http://geos.osgeo.org * * Copyright (C) 2023 Paul Ramsey * * This is free software; you can redistribute and/or modify it under * the terms of the GNU Lesser General Public Licence as published * by the Free Software Foundation. * See the COPYING file for more information. * **********************************************************************/ #pragma once #include #include #include // Forward declarations namespace geos { namespace geom { class CoordinateSequence; class CoordinateXY; class Geometry; class GeometryFactory; class LineSegment; class LineString; class Polygon; } } using geos::geom::CoordinateSequence; using geos::geom::CoordinateXY; using geos::geom::Geometry; using geos::geom::GeometryFactory; using geos::geom::LineSegment; using geos::geom::LineString; using geos::geom::Polygon; namespace geos { namespace algorithm { // geos::algorithm /** * Computes the minimum-area rectangle enclosing a Geometry. * Unlike the Envelope, the rectangle may not be axis-parallel. * * The first step in the algorithm is computing the convex hull of the Geometry. * If the input Geometry is known to be convex, a hint can be supplied to * avoid this computation. * * In degenerate cases the minimum enclosing geometry * may be a LineString or a Point. * * The minimum-area enclosing rectangle does not necessarily * have the minimum possible width. * Use MinimumDiameter to compute this. * * @see MinimumDiameter * @see ConvexHull * */ class GEOS_DLL MinimumAreaRectangle { private: // Members const Geometry* m_inputGeom; bool m_isConvex; // Methods std::unique_ptr getMinimumRectangle(); std::unique_ptr computeConvex(const Geometry* convexGeom); /** * Computes the minimum-area rectangle for a convex ring of Coordinate. * * This algorithm uses the "dual rotating calipers" technique. * Performance is linear in the number of segments. * * @param ring the convex ring to scan */ std::unique_ptr computeConvexRing(const CoordinateSequence* ring); std::size_t findFurthestVertex( const CoordinateSequence* pts, const LineSegment& baseSeg, std::size_t startIndex, int orient); bool isFurtherOrEqual(double d1, double d2, int orient); static double orientedDistance( const LineSegment& seg, const CoordinateXY& p, int orient); static std::size_t getNextIndex( const CoordinateSequence* ring, std::size_t index); /** * Creates a line of maximum extent from the provided vertices * @param pts the vertices * @param factory the geometry factory * @return the line of maximum extent */ static std::unique_ptr computeMaximumLine( const CoordinateSequence* pts, const GeometryFactory* factory); public: /** * Compute a minimum-area rectangle for a given Geometry. * * @param inputGeom a Geometry */ MinimumAreaRectangle(const Geometry* inputGeom) : m_inputGeom(inputGeom) , m_isConvex(false) {}; /** * Compute a minimum rectangle for a Geometry, * with a hint if the geometry is convex * (e.g. a convex Polygon or LinearRing, * or a two-point LineString, or a Point). * * @param inputGeom a Geometry which is convex * @param isConvex true if the input geometry is convex */ MinimumAreaRectangle(const Geometry* inputGeom, bool isConvex) : m_inputGeom(inputGeom) , m_isConvex(isConvex) {}; /** * Gets the minimum-area rectangular Polygon which encloses the input geometry. * If the convex hull of the input is degenerate (a line or point) * a LineString or Point is returned. * * @param geom the geometry * @return the minimum rectangle enclosing the geometry */ static std::unique_ptr getMinimumRectangle(const Geometry* geom); }; } // namespace geos::algorithm } // namespace geos