/********************************************************************** * * GEOS - Geometry Engine Open Source * http://geos.osgeo.org * * Copyright (C) 2019 Paul Ramsey * * This is free software; you can redistribute and/or modify it under * the terms of the GNU Lesser General Public Licence as published * by the Free Software Foundation. * See the COPYING file for more information. * ********************************************************************** * * Last port: algorithm/MinimumBoundingCircle.java 2019-01-23 * **********************************************************************/ #pragma once #include #include #include #include #include #include #include // Forward declarations // namespace geos { // namespace geom { // class GeometryCollection; // } // } namespace geos { namespace algorithm { // geos::algorithm class GEOS_DLL MinimumBoundingCircle { private: // member variables const geom::Geometry* input; std::vector extremalPts; geom::CoordinateXY centre; double radius; void computeCentre(); void compute(); void computeCirclePoints(); geom::CoordinateXY lowestPoint(std::vector& pts); geom::CoordinateXY pointWitMinAngleWithX(std::vector& pts, geom::CoordinateXY& P); geom::CoordinateXY pointWithMinAngleWithSegment(std::vector& pts, geom::CoordinateXY& P, geom::CoordinateXY& Q); std::vector farthestPoints(std::vector& pts); public: MinimumBoundingCircle(const geom::Geometry* geom): input(nullptr), radius(0.0) { input = geom; centre.setNull(); } ~MinimumBoundingCircle() {}; /** * Gets a geometry which represents the Minimum Bounding Circle. * If the input is degenerate (empty or a single unique point), * this method will return an empty geometry or a single Point geometry. * Otherwise, a Polygon will be returned which approximates the * Minimum Bounding Circle. * (Note that because the computed polygon is only an approximation, * it may not precisely contain all the input points.) * * @return a Geometry representing the Minimum Bounding Circle. */ std::unique_ptr getCircle(); /** * Gets a geometry representing a line between the two farthest points * in the input. * These points will be two of the extremal points of the Minimum Bounding Circle. * They also lie on the convex hull of the input. * * @return a LineString between the two farthest points of the input * @return a empty LineString if the input is empty * @return a Point if the input is a point */ std::unique_ptr getMaximumDiameter(); /** * Gets a geometry representing the diameter of the computed Minimum Bounding * Circle. * * @return the diameter LineString of the Minimum Bounding Circle * @return a empty LineString if the input is empty * @return a Point if the input is a point */ std::unique_ptr getDiameter(); /** * Gets the extremal points which define the computed Minimum Bounding Circle. * There may be zero, one, two or three of these points, * depending on the number of points in the input * and the geometry of those points. * * @return the points defining the Minimum Bounding Circle */ std::vector getExtremalPoints(); /** * Gets the centre point of the computed Minimum Bounding Circle. * * @return the centre point of the Minimum Bounding Circle * @return null if the input is empty */ geom::CoordinateXY getCentre(); /** * Gets the radius of the computed Minimum Bounding Circle. * * @return the radius of the Minimum Bounding Circle */ double getRadius(); }; } // namespace geos::algorithm } // namespace geos