#include "common.h" // third-party utilities // use your favorite implementations #define DR_WAV_IMPLEMENTATION #include "dr_wav.h" #include #include #include #ifndef M_PI #define M_PI 3.14159265358979323846 #endif bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { for (int i = 1; i < argc; i++) { std::string arg = argv[i]; if (arg == "-s" || arg == "--seed") { params.seed = std::stoi(argv[++i]); } else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); } else if (arg == "-p" || arg == "--prompt") { params.prompt = argv[++i]; } else if (arg == "-n" || arg == "--n_predict") { params.n_predict = std::stoi(argv[++i]); } else if (arg == "--top_k") { params.top_k = std::stoi(argv[++i]); } else if (arg == "--top_p") { params.top_p = std::stof(argv[++i]); } else if (arg == "--temp") { params.temp = std::stof(argv[++i]); } else if (arg == "-b" || arg == "--batch_size") { params.n_batch = std::stoi(argv[++i]); } else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; } else if (arg == "-h" || arg == "--help") { gpt_print_usage(argc, argv, params); exit(0); } else { fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); gpt_print_usage(argc, argv, params); exit(0); } } return true; } void gpt_print_usage(int argc, char ** argv, const gpt_params & params) { fprintf(stderr, "usage: %s [options]\n", argv[0]); fprintf(stderr, "\n"); fprintf(stderr, "options:\n"); fprintf(stderr, " -h, --help show this help message and exit\n"); fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n"); fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); fprintf(stderr, " -p PROMPT, --prompt PROMPT\n"); fprintf(stderr, " prompt to start generation with (default: random)\n"); fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d)\n", params.n_predict); fprintf(stderr, " --top_k N top-k sampling (default: %d)\n", params.top_k); fprintf(stderr, " --top_p N top-p sampling (default: %.1f)\n", params.top_p); fprintf(stderr, " --temp N temperature (default: %.1f)\n", params.temp); fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch); fprintf(stderr, " -m FNAME, --model FNAME\n"); fprintf(stderr, " model path (default: %s)\n", params.model.c_str()); fprintf(stderr, "\n"); } std::string gpt_random_prompt(std::mt19937 & rng) { const int r = rng() % 10; switch (r) { case 0: return "So"; case 1: return "Once upon a time"; case 2: return "When"; case 3: return "The"; case 4: return "After"; case 5: return "If"; case 6: return "import"; case 7: return "He"; case 8: return "She"; case 9: return "They"; default: return "To"; } return "The"; } std::string trim(const std::string & s) { std::regex e("^\\s+|\\s+$"); return std::regex_replace(s, e, ""); } std::string replace(const std::string & s, const std::string & from, const std::string & to) { std::string result = s; size_t pos = 0; while ((pos = result.find(from, pos)) != std::string::npos) { result.replace(pos, from.length(), to); pos += to.length(); } return result; } std::map json_parse(const std::string & fname) { std::map result; // read file into string std::string json; { std::ifstream ifs(fname); if (!ifs) { fprintf(stderr, "Failed to open %s\n", fname.c_str()); exit(1); } json = std::string((std::istreambuf_iterator(ifs)), (std::istreambuf_iterator())); } if (json[0] != '{') { return result; } // parse json { bool has_key = false; bool in_token = false; std::string str_key = ""; std::string str_val = ""; int n = json.size(); for (int i = 1; i < n; ++i) { if (!in_token) { if (json[i] == ' ') continue; if (json[i] == '"') { in_token = true; continue; } } else { if (json[i] == '\\' && i+1 < n) { if (has_key == false) { str_key += json[i]; } else { str_val += json[i]; } ++i; } else if (json[i] == '"') { if (has_key == false) { has_key = true; ++i; while (json[i] == ' ') ++i; ++i; // : while (json[i] == ' ') ++i; if (json[i] != '\"') { while (json[i] != ',' && json[i] != '}') { str_val += json[i++]; } has_key = false; } else { in_token = true; continue; } } else { has_key = false; } str_key = ::replace(str_key, "\\u0120", " " ); // \u0120 -> space str_key = ::replace(str_key, "\\u010a", "\n"); // \u010a -> new line str_key = ::replace(str_key, "\\\"", "\""); // \\\" -> " try { result[str_key] = std::stoi(str_val); } catch (...) { //fprintf(stderr, "%s: ignoring key '%s' with value '%s'\n", fname.c_str(), str_key.c_str(), str_val.c_str()); } str_key = ""; str_val = ""; in_token = false; continue; } if (has_key == false) { str_key += json[i]; } else { str_val += json[i]; } } } } return result; } std::vector gpt_tokenize(const gpt_vocab & vocab, const std::string & text) { std::vector words; // first split the text into words { std::string str = text; std::string pat = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"; std::regex re(pat); std::smatch m; while (std::regex_search(str, m, re)) { for (auto x : m) { words.push_back(x); } str = m.suffix(); } } // find the longest tokens that form the words: std::vector tokens; for (const auto & word : words) { if (word.size() == 0) continue; int i = 0; int n = word.size(); while (i < n) { int j = n; while (j > i) { auto it = vocab.token_to_id.find(word.substr(i, j-i)); if (it != vocab.token_to_id.end()) { tokens.push_back(it->second); i = j; break; } --j; } if (i == n) { break; } if (j == i) { auto sub = word.substr(i, 1); if (vocab.token_to_id.find(sub) != vocab.token_to_id.end()) { tokens.push_back(vocab.token_to_id.at(sub)); } else { fprintf(stderr, "%s: unknown token '%s'\n", __func__, sub.data()); } ++i; } } } return tokens; } bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab) { printf("%s: loading vocab from '%s'\n", __func__, fname.c_str()); vocab.token_to_id = ::json_parse(fname); for (const auto & kv : vocab.token_to_id) { vocab.id_to_token[kv.second] = kv.first; } printf("%s: vocab size = %d\n", __func__, (int) vocab.token_to_id.size()); // print the vocabulary //for (auto kv : vocab.token_to_id) { // printf("'%s' -> %d\n", kv.first.data(), kv.second); //} return true; } gpt_vocab::id gpt_sample_top_k_top_p( const gpt_vocab & vocab, const float * logits, int top_k, double top_p, double temp, std::mt19937 & rng) { int n_logits = vocab.id_to_token.size(); std::vector> logits_id; logits_id.reserve(n_logits); { const double scale = 1.0/temp; for (int i = 0; i < n_logits; ++i) { logits_id.push_back(std::make_pair(logits[i]*scale, i)); } } // find the top K tokens std::partial_sort( logits_id.begin(), logits_id.begin() + top_k, logits_id.end(), [](const std::pair & a, const std::pair & b) { return a.first > b.first; }); logits_id.resize(top_k); double maxl = -INFINITY; for (const auto & kv : logits_id) { maxl = std::max(maxl, kv.first); } // compute probs for the top K tokens std::vector probs; probs.reserve(logits_id.size()); double sum = 0.0; for (const auto & kv : logits_id) { double p = exp(kv.first - maxl); probs.push_back(p); sum += p; } // normalize the probs for (auto & p : probs) { p /= sum; } if (top_p < 1.0f) { double cumsum = 0.0f; for (int i = 0; i < top_k; i++) { cumsum += probs[i]; if (cumsum >= top_p) { top_k = i + 1; probs.resize(top_k); logits_id.resize(top_k); break; } } cumsum = 1.0/cumsum; for (int i = 0; i < (int) probs.size(); i++) { probs[i] *= cumsum; } } //printf("\n"); //for (int i = 0; i < (int) probs.size(); i++) { // printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]); //} //exit(0); std::discrete_distribution<> dist(probs.begin(), probs.end()); int idx = dist(rng); return logits_id[idx].second; } bool read_wav(const std::string & fname, std::vector& pcmf32, std::vector>& pcmf32s, bool stereo) { drwav wav; std::vector wav_data; // used for pipe input from stdin if (fname == "-") { { uint8_t buf[1024]; while (true) { const size_t n = fread(buf, 1, sizeof(buf), stdin); if (n == 0) { break; } wav_data.insert(wav_data.end(), buf, buf + n); } } if (drwav_init_memory(&wav, wav_data.data(), wav_data.size(), nullptr) == false) { fprintf(stderr, "error: failed to open WAV file from stdin\n"); return false; } fprintf(stderr, "%s: read %zu bytes from stdin\n", __func__, wav_data.size()); } else if (drwav_init_file(&wav, fname.c_str(), nullptr) == false) { fprintf(stderr, "error: failed to open '%s' as WAV file\n", fname.c_str()); return false; } if (wav.channels != 1 && wav.channels != 2) { fprintf(stderr, "%s: WAV file '%s' must be mono or stereo\n", __func__, fname.c_str()); return false; } if (stereo && wav.channels != 2) { fprintf(stderr, "%s: WAV file '%s' must be stereo for diarization\n", __func__, fname.c_str()); return false; } if (wav.sampleRate != COMMON_SAMPLE_RATE) { fprintf(stderr, "%s: WAV file '%s' must be %i kHz\n", __func__, fname.c_str(), COMMON_SAMPLE_RATE/1000); return false; } if (wav.bitsPerSample != 16) { fprintf(stderr, "%s: WAV file '%s' must be 16-bit\n", __func__, fname.c_str()); return false; } const uint64_t n = wav_data.empty() ? wav.totalPCMFrameCount : wav_data.size()/(wav.channels*wav.bitsPerSample/8); std::vector pcm16; pcm16.resize(n*wav.channels); drwav_read_pcm_frames_s16(&wav, n, pcm16.data()); drwav_uninit(&wav); // convert to mono, float pcmf32.resize(n); if (wav.channels == 1) { for (uint64_t i = 0; i < n; i++) { pcmf32[i] = float(pcm16[i])/32768.0f; } } else { for (uint64_t i = 0; i < n; i++) { pcmf32[i] = float(pcm16[2*i] + pcm16[2*i + 1])/65536.0f; } } if (stereo) { // convert to stereo, float pcmf32s.resize(2); pcmf32s[0].resize(n); pcmf32s[1].resize(n); for (uint64_t i = 0; i < n; i++) { pcmf32s[0][i] = float(pcm16[2*i])/32768.0f; pcmf32s[1][i] = float(pcm16[2*i + 1])/32768.0f; } } return true; } void high_pass_filter(std::vector & data, float cutoff, float sample_rate) { const float rc = 1.0f / (2.0f * M_PI * cutoff); const float dt = 1.0f / sample_rate; const float alpha = dt / (rc + dt); float y = data[0]; for (size_t i = 1; i < data.size(); i++) { y = alpha * (y + data[i] - data[i - 1]); data[i] = y; } } bool vad_simple(std::vector & pcmf32, int sample_rate, int last_ms, float vad_thold, float freq_thold, bool verbose) { const int n_samples = pcmf32.size(); const int n_samples_last = (sample_rate * last_ms) / 1000; if (n_samples_last >= n_samples) { // not enough samples - assume no speech return false; } if (freq_thold > 0.0f) { high_pass_filter(pcmf32, freq_thold, sample_rate); } float energy_all = 0.0f; float energy_last = 0.0f; for (int i = 0; i < n_samples; i++) { energy_all += fabsf(pcmf32[i]); if (i >= n_samples - n_samples_last) { energy_last += fabsf(pcmf32[i]); } } energy_all /= n_samples; energy_last /= n_samples_last; if (verbose) { fprintf(stderr, "%s: energy_all: %f, energy_last: %f, vad_thold: %f, freq_thold: %f\n", __func__, energy_all, energy_last, vad_thold, freq_thold); } if (energy_last > vad_thold*energy_all) { return false; } return true; }