# Convert GPT-2 h5 transformer model to ggml format # # Load the model using GPT2Model. # Iterate over all variables and write them to a binary file. # # For each variable, write the following: # - Number of dimensions (int) # - Name length (int) # - Dimensions (int[n_dims]) # - Name (char[name_length]) # - Data (float[n_dims]) # # By default, the bigger matrices are converted to 16-bit floats. # This can be disabled by adding the "use-f32" CLI argument. # # At the start of the ggml file we write the model parameters # and vocabulary. # import sys import struct import json import numpy as np import re from transformers import GPT2Model # ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a signficant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8+n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) if len(sys.argv) < 2: print("Usage: convert-h5-to-ggml.py dir-model [use-f32]\n") sys.exit(1) # output in the same directory as the model dir_model = sys.argv[1] fname_out = sys.argv[1] + "/ggml-model.bin" with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f: encoder = json.load(f) with open(dir_model + "/added_tokens.json", "r", encoding="utf-8") as f: encoder_added = json.load(f) with open(dir_model + "/config.json", "r", encoding="utf-8") as f: hparams = json.load(f) # use 16-bit or 32-bit floats use_f16 = True if len(sys.argv) > 2: use_f16 = False fname_out = sys.argv[1] + "/ggml-model-f32.bin" model = GPT2Model.from_pretrained(dir_model, low_cpu_mem_usage=True) #print (model) list_vars = model.state_dict() #print (list_vars) fout = open(fname_out, "wb") fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex fout.write(struct.pack("i", hparams["vocab_size"])) fout.write(struct.pack("i", hparams["n_positions"])) fout.write(struct.pack("i", hparams["n_embd"])) fout.write(struct.pack("i", hparams["n_head"])) fout.write(struct.pack("i", hparams["n_layer"])) #fout.write(struct.pack("i", hparams["rotary_dim"])) fout.write(struct.pack("i", use_f16)) byte_encoder = bytes_to_unicode() byte_decoder = {v:k for k, v in byte_encoder.items()} fout.write(struct.pack("i", len(encoder) + len(encoder_added))) for key in encoder: text = bytearray([byte_decoder[c] for c in key]) fout.write(struct.pack("i", len(text))) fout.write(text) for key in encoder_added: text = bytearray([byte_decoder[c] for c in key]) fout.write(struct.pack("i", len(text))) fout.write(text) for name in list_vars.keys(): data = list_vars[name].squeeze().numpy() print("Processing variable: " + name + " with shape: ", data.shape) # we don't need these if name.endswith("attn.masked_bias") or name.endswith(".attn.bias"): print(" Skipping variable: " + name) continue n_dims = len(data.shape); # ftype == 0 -> float32, ftype == 1 -> float16 ftype = 0; if use_f16: if name[-7:] == ".weight" and n_dims == 2: print(" Converting to float16") data = data.astype(np.float16) ftype = 1 else: print(" Converting to float32") data = data.astype(np.float32) ftype = 0 # for efficiency - transpose these matrices: # "transformer.h.*.mlp.c_proj.weight if name.endswith(".mlp.c_proj.weight"): print(" Transposing") data = data.transpose() # rename headers to keep compatibility if name == "ln_f.weight": name = "model/ln_f/g" elif name == "ln_f.bias": name = "model/ln_f/b" elif name == "wte.weight": name = "model/wte" elif name == "wpe.weight": name = "model/wpe" elif re.match(r"h\.\d+\.ln_1\.weight", name): i = re.findall("\d+", name)[0] name = f"model/h{i}/ln_1/g" elif re.match(r"h\.\d+\.ln_1\.bias", name): i = re.findall("\d+", name)[0] name = f"model/h{i}/ln_1/b" elif re.match(r"h\.\d+\.attn\.c_attn\.weight", name): i = re.findall("\d+", name)[0] name = f"model/h{i}/attn/c_attn/w" elif re.match(r"h\.\d+\.attn\.c_attn\.bias", name): i = re.findall("\d+", name)[0] name = f"model/h{i}/attn/c_attn/b" elif re.match(r"h\.\d+\.attn\.c_proj\.weight", name): i = re.findall("\d+", name)[0] name = f"model/h{i}/attn/c_proj/w" elif re.match(r"h.\d+.attn.c_proj.bias", name): i = re.findall("\d+", name)[0] name = f"model/h{i}/attn/c_proj/b" elif re.match(r"h.\d+.ln_2.weight", name): i = re.findall("\d+", name)[0] name = f"model/h{i}/ln_2/g" elif re.match(r"h.\d+.ln_2.bias", name): i = re.findall("\d+", name)[0] name = f"model/h{i}/ln_2/b" elif re.match(r"h.\d+.mlp.c_fc.weight", name): i = re.findall("\d+", name)[0] name = f"model/h{i}/mlp/c_fc/w" elif re.match(r"h.\d+.mlp.c_fc.bias", name): i = re.findall("\d+", name)[0] name = f"model/h{i}/mlp/c_fc/b" elif re.match(r"h.\d+.mlp.c_proj.weight", name): i = re.findall("\d+", name)[0] name = f"model/h{i}/mlp/c_proj/w" elif re.match(r"h.\d+.mlp.c_proj.bias", name): i = re.findall("\d+", name)[0] name = f"model/h{i}/mlp/c_proj/b" else: print("Unrecognized variable name. %s", name) str = name.encode('utf-8') fout.write(struct.pack("iii", n_dims, len(str), ftype)) for i in range(n_dims): fout.write(struct.pack("i", data.shape[n_dims - 1 - i])) fout.write(str); # data data.tofile(fout) fout.close() print("Done. Output file: " + fname_out) print("")