import sys import struct import json import torch import numpy as np from transformers import AutoModelForCausalLM, AutoTokenizer if len(sys.argv) < 3: print("Usage: convert-h5-to-ggml.py dir-model [use-f32]\n") print(" ftype == 0 -> float32") print(" ftype == 1 -> float16") sys.exit(1) # output in the same directory as the model dir_model = sys.argv[1] fname_out = sys.argv[1] + "/ggml-model.bin" with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f: encoder = json.load(f) with open(dir_model + "/config.json", "r", encoding="utf-8") as f: hparams = json.load(f) # possible data types # ftype == 0 -> float32 # ftype == 1 -> float16 # # map from ftype to string ftype_str = ["f32", "f16"] ftype = 1 if len(sys.argv) > 2: ftype = int(sys.argv[2]) if ftype < 0 or ftype > 1: print("Invalid ftype: " + str(ftype)) sys.exit(1) fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin" tokenizer = AutoTokenizer.from_pretrained(dir_model) model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True) #print (model) #print(tokenizer.encode('I believe the meaning of life is')) list_vars = model.state_dict() for name in list_vars.keys(): print(name, list_vars[name].shape, list_vars[name].dtype) fout = open(fname_out, "wb") print(hparams) fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex fout.write(struct.pack("i", hparams["vocab_size"])) fout.write(struct.pack("i", hparams["max_position_embeddings"])) fout.write(struct.pack("i", hparams["hidden_size"])) fout.write(struct.pack("i", hparams["num_attention_heads"])) fout.write(struct.pack("i", hparams["num_hidden_layers"])) fout.write(struct.pack("i", int(hparams["rotary_pct"]*(hparams["hidden_size"]//hparams["num_attention_heads"])))) fout.write(struct.pack("i", ftype)) # TODO: temporary hack to not deal with implementing the tokenizer dot_token = tokenizer.encode('.')[0] for i in range(hparams["vocab_size"]): text = tokenizer.decode([dot_token, i]).encode('utf-8') # remove the first byte (it's always '.') text = text[1:] fout.write(struct.pack("i", len(text))) fout.write(text) for name in list_vars.keys(): data = list_vars[name].squeeze().numpy() print("Processing variable: " + name + " with shape: ", data.shape) # we don't need these if name.endswith(".attention.masked_bias") or \ name.endswith(".attention.bias") or \ name.endswith(".attention.rotary_emb.inv_freq"): print(" Skipping variable: " + name) continue n_dims = len(data.shape); # ftype == 0 -> float32, ftype == 1 -> float16 ftype_cur = 0; if ftype != 0: if name[-7:] == ".weight" and n_dims == 2: print(" Converting to float16") data = data.astype(np.float16) ftype_cur = 1 else: print(" Converting to float32") data = data.astype(np.float32) ftype_cur = 0 else: if data.dtype != np.float32: print(" Converting to float32") data = data.astype(np.float32) ftype_cur = 0 # header str = name.encode('utf-8') fout.write(struct.pack("iii", n_dims, len(str), ftype_cur)) for i in range(n_dims): fout.write(struct.pack("i", data.shape[n_dims - 1 - i])) fout.write(str); # data data.tofile(fout) fout.close() print("Done. Output file: " + fname_out) print("")