#include "ggml/ggml.h" #include #include #include #include #define MAX_NARGS 2 float frand() { return (float)rand()/(float)RAND_MAX; } int irand(int n) { return rand()%n; } void get_random_dims(int64_t * dims, int ndims) { dims[0] = dims[1] = dims[2] = dims[3] = 1; for (int i = 0; i < ndims; i++) { dims[i] = 1 + irand(4); } } struct ggml_tensor * get_random_tensor( struct ggml_context * ctx0, int ndims, int64_t ne[], float fmin, float fmax) { struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_F32, ndims, ne); switch (ndims) { case 1: for (int i0 = 0; i0 < ne[0]; i0++) { ((float *)result->data)[i0] = frand()*(fmax - fmin) + fmin; } break; case 2: for (int i1 = 0; i1 < ne[1]; i1++) { for (int i0 = 0; i0 < ne[0]; i0++) { ((float *)result->data)[i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin; } } break; case 3: for (int i2 = 0; i2 < ne[2]; i2++) { for (int i1 = 0; i1 < ne[1]; i1++) { for (int i0 = 0; i0 < ne[0]; i0++) { ((float *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin; } } } break; case 4: for (int i3 = 0; i3 < ne[3]; i3++) { for (int i2 = 0; i2 < ne[2]; i2++) { for (int i1 = 0; i1 < ne[1]; i1++) { for (int i0 = 0; i0 < ne[0]; i0++) { ((float *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin; } } } } break; default: assert(false); }; return result; } float get_element(const struct ggml_tensor * t, int idx) { return ((float *)t->data)[idx]; } void set_element(struct ggml_tensor * t, int idx, float value) { ((float *)t->data)[idx] = value; } bool check_gradient( const char * op_name, struct ggml_context * ctx0, struct ggml_tensor * x[], struct ggml_tensor * f, int ndims, int nargs, float eps, float max_error_abs, float max_error_rel) { struct ggml_cgraph gf = ggml_build_forward (f); struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false); ggml_graph_compute(ctx0, &gf); ggml_graph_reset (&gf); ggml_set_f32 (f->grad, 1.0f); ggml_graph_compute(ctx0, &gb); ggml_graph_dump_dot(&gf, NULL, "test-grad0-forward.dot"); ggml_graph_dump_dot(&gb, &gf, "test-grad0-backward.dot"); for (int i = 0; i < nargs; ++i) { const int nelements = ggml_nelements(x[i]); for (int k = 0; k < nelements; ++k) { // compute gradient using finite differences const float x0 = get_element(x[i], k); set_element(x[i], k, x0 + eps); ggml_graph_compute(ctx0, &gf); const float f0 = ggml_get_f32_1d(f, 0); set_element(x[i], k, x0 - eps); ggml_graph_compute(ctx0, &gf); const float f1 = ggml_get_f32_1d(f, 0); const float g0 = (f0 - f1)/(2.0f*eps); set_element(x[i], k, x0); // compute gradient using backward graph ggml_graph_reset (&gf); ggml_set_f32 (f->grad, 1.0f); ggml_graph_compute(ctx0, &gb); const float g1 = get_element(x[i]->grad, k); const float error_abs = fabsf(g0 - g1); const float error_rel = g0 != 0 ? fabsf(g0 - g1)/fabs(g0) : 0; if (error_abs > max_error_abs || error_rel > max_error_rel) { printf("%s: ndims=%d, i=%d, k=%d, g0=%f, g1=%f, error_abs=%f, error_rel=%f\n", op_name, ndims, i, k, g0, g1, error_abs, error_rel); assert(false); } } } return true; } // TODO: clean-up this .. bool check_mat_mul( const struct ggml_tensor * y, const struct ggml_tensor * x0, const struct ggml_tensor * x1) { float * dst = (float *) y->data; float * src0 = (float *) x0->data; float * src1 = (float *) x1->data; const int nc = x0->ne[1]; const int nr = x1->ne[1]; const int nk = x0->ne[0]; printf("check_mat_mul: nc=%d, nr=%d, nk=%d\n", nc, nr, nk); printf("x0:\n"); for (int j = 0; j < x0->ne[1]; ++j) { for (int i = 0; i < x0->ne[0]; ++i) { printf("%6.3f ", src0[j*nk + i]); } printf("\n"); } printf("\n"); printf("x1:\n"); for (int j = 0; j < x1->ne[1]; ++j) { for (int i = 0; i < x1->ne[0]; ++i) { printf("%6.3f ", src1[j*nk + i]); } printf("\n"); } printf("\n"); printf("y: n_dims = %d, (%lld, %lld)\n", y->n_dims, y->ne[0], y->ne[1]); for (int j = 0; j < y->ne[1]; ++j) { for (int i = 0; i < y->ne[0]; ++i) { printf("%6.3f ", dst[j*nr + i]); } printf("\n"); } for (int i = 0; i < nr; ++i) { for (int j = 0; j < nc; ++j) { float sum = 0.0f; for (int k = 0; k < nk; ++k) { sum += src0[j*nk + k]*src1[i*nk + k]; } if (fabsf(dst[i*nc + j] - sum) > 1e-5f) { printf("check_mat_mul: dst[%d] = %f, sum = %f\n", i*nc + j, dst[i*nc + j], sum); assert(false); return false; } } } return true; } int main(int argc, const char ** argv) { struct ggml_init_params params = { .mem_size = 128*1024*1024, .mem_buffer = NULL, .no_alloc = false, }; int64_t ne[4]; // original loop: 1000 int niter = 1000; const char *env = getenv("GGML_NLOOP"); if (env != NULL) { niter = atoi(env); } if (argc > 1) { niter = atoi(argv[1]); } for (int iter = 0; iter < niter; ++iter) { printf("test-grad0: iter:%d/%d\n", iter, niter); struct ggml_context * ctx0 = ggml_init(params); get_random_dims(ne, 4); struct ggml_tensor * x[MAX_NARGS]; // add { const int nargs = 2; for (int ndims = 1; ndims <= 2; ++ndims) { for (int i = 0; i < nargs; ++i) { x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); ggml_set_param(ctx0, x[i]); } struct ggml_tensor * f = ggml_sum(ctx0, ggml_add(ctx0, x[0], x[1])); check_gradient("add", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f); } } // sub { const int nargs = 2; for (int ndims = 1; ndims <= 2; ++ndims) { for (int i = 0; i < nargs; ++i) { x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); ggml_set_param(ctx0, x[i]); } struct ggml_tensor * f = ggml_sum(ctx0, ggml_sub(ctx0, x[0], x[1])); check_gradient("sub", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f); } } // mul { const int nargs = 2; for (int ndims = 1; ndims <= 2; ++ndims) { for (int i = 0; i < nargs; ++i) { x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); ggml_set_param(ctx0, x[i]); } struct ggml_tensor * f = ggml_sum(ctx0, ggml_mul(ctx0, x[0], x[1])); check_gradient("mul", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY); } } // div { const int nargs = 2; for (int ndims = 1; ndims <= 2; ++ndims) { for (int i = 0; i < nargs; ++i) { x[i] = get_random_tensor(ctx0, ndims, ne, 0.5f, 1.0f); ggml_set_param(ctx0, x[i]); } struct ggml_tensor * f = ggml_sum(ctx0, ggml_div(ctx0, x[0], x[1])); check_gradient("div", ctx0, x, f, ndims, nargs, 1e-3f, INFINITY, 1e-2f); } } // sqr { const int nargs = 1; for (int ndims = 1; ndims <= 2; ++ndims) { for (int i = 0; i < nargs; ++i) { x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); ggml_set_param(ctx0, x[i]); } struct ggml_tensor * f = ggml_sum(ctx0, ggml_sqr(ctx0, x[0])); check_gradient("sqr", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY); } } // sqrt { const int nargs = 1; for (int ndims = 1; ndims <= 2; ++ndims) { for (int i = 0; i < nargs; ++i) { x[i] = get_random_tensor(ctx0, ndims, ne, 2.0f*1e-3f, 1.0f); ggml_set_param(ctx0, x[i]); } struct ggml_tensor * f = ggml_sum(ctx0, ggml_sqrt(ctx0, x[0])); check_gradient("sqrt", ctx0, x, f, ndims, nargs, 1e-3f, INFINITY, 1e-1f); } } // sum { const int nargs = 1; for (int ndims = 1; ndims <= 2; ++ndims) { for (int i = 0; i < nargs; ++i) { x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); ggml_set_param(ctx0, x[i]); } struct ggml_tensor * f = ggml_sum(ctx0, x[0]); check_gradient("sum", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f); } } // abs (finite differences do not work) //{ // const int nargs = 1; // for (int ndims = 1; ndims <= 2; ++ndims) { // for (int i = 0; i < nargs; ++i) { // x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); // ggml_set_param(ctx0, x[i]); // } // struct ggml_tensor * f = ggml_sum(ctx0, ggml_abs(ctx0, x[0])); // check_gradient("abs", ctx0, x, f, ndims, nargs, 1e-3f, INFINITY, 1e-3f); // } //} // mul_mat { const int nargs = 1; for (int ndims = 2; ndims <= 2; ++ndims) { x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); { int64_t ne2[4]; get_random_dims(ne2, 4); ne2[0] = ne[0]; x[1] = get_random_tensor(ctx0, ndims, ne2, -1.0f, 1.0f); } ggml_set_param(ctx0, x[0]); struct ggml_tensor * m = ggml_mul_mat(ctx0, x[1], x[0]); struct ggml_tensor * f = ggml_sum(ctx0, m); printf("testing: mul_mat, [%lld, %lld] (%d) * [%lld, %lld] (%d)\n", x[1]->ne[0], x[1]->ne[1], x[1]->n_dims, x[0]->ne[0], x[0]->ne[1], x[0]->n_dims); check_gradient("mul_mat", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY); check_mat_mul(m, x[1], x[0]); } } ggml_free(ctx0); } return 0; }