#include "ggml/ggml.h" #include #include #include #include #define MAX_NARGS 2 float frand() { return (float)rand()/(float)RAND_MAX; } int irand(int n) { return rand()%n; } void get_random_dims(int64_t * dims, int ndims) { dims[0] = dims[1] = dims[2] = dims[3] = 1; for (int i = 0; i < ndims; i++) { dims[i] = 1 + irand(4); } } struct ggml_tensor * get_random_tensor( struct ggml_context * ctx0, int ndims, int64_t ne[], float fmin, float fmax) { struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_F32, ndims, ne); switch (ndims) { case 1: for (int i0 = 0; i0 < ne[0]; i0++) { ((float *)result->data)[i0] = frand()*(fmax - fmin) + fmin; } break; case 2: for (int i1 = 0; i1 < ne[1]; i1++) { for (int i0 = 0; i0 < ne[0]; i0++) { ((float *)result->data)[i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin; } } break; case 3: for (int i2 = 0; i2 < ne[2]; i2++) { for (int i1 = 0; i1 < ne[1]; i1++) { for (int i0 = 0; i0 < ne[0]; i0++) { ((float *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin; } } } break; case 4: for (int i3 = 0; i3 < ne[3]; i3++) { for (int i2 = 0; i2 < ne[2]; i2++) { for (int i1 = 0; i1 < ne[1]; i1++) { for (int i0 = 0; i0 < ne[0]; i0++) { ((float *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin; } } } } break; default: assert(false); }; return result; } float get_element(const struct ggml_tensor * t, int idx) { return ((float *)t->data)[idx]; } void set_element(struct ggml_tensor * t, int idx, float value) { ((float *)t->data)[idx] = value; } bool check_gradient( const char * op_name, struct ggml_context * ctx0, struct ggml_tensor * x[], struct ggml_tensor * f, int ndims, int nargs, float eps, float max_error_abs, float max_error_rel) { struct ggml_cgraph gf = ggml_build_forward (f); struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false); ggml_graph_compute(ctx0, &gf); ggml_graph_reset (&gf); ggml_set_f32 (f->grad, 1.0f); ggml_graph_compute(ctx0, &gb); ggml_graph_dump_dot(&gf, NULL, "test-grad0-forward.dot"); ggml_graph_dump_dot(&gb, &gf, "test-grad0-backward.dot"); for (int i = 0; i < nargs; ++i) { const int64_t nelements = ggml_nelements(x[i]); for (int64_t k = 0; k < nelements; ++k) { // compute gradient using finite differences const float x0 = get_element(x[i], k); set_element(x[i], k, x0 + eps); ggml_graph_compute(ctx0, &gf); const float f0 = ggml_get_f32_1d(f, 0); set_element(x[i], k, x0 - eps); ggml_graph_compute(ctx0, &gf); const float f1 = ggml_get_f32_1d(f, 0); const float g0 = (f0 - f1)/(2.0f*eps); set_element(x[i], k, x0); // compute gradient using backward graph ggml_graph_reset (&gf); ggml_set_f32 (f->grad, 1.0f); ggml_graph_compute(ctx0, &gb); const float g1 = get_element(x[i]->grad, k); const float error_abs = fabsf(g0 - g1); const float error_rel = g0 != 0 ? fabsf(g0 - g1)/fabs(g0) : 0; if (error_abs > max_error_abs || error_rel > max_error_rel) { printf("%s: ndims=%d, i=%d, k=%lld, g0=%f, g1=%f, error_abs=%f, error_rel=%f\n", op_name, ndims, i, k, g0, g1, error_abs, error_rel); assert(false); } } } return true; } float mat_get(const struct ggml_tensor * t, int i0, int i1, int i2, int i3) { const size_t nb0 = t->nb[0]; const size_t nb1 = t->nb[1]; const size_t nb2 = t->nb[2]; const size_t nb3 = t->nb[3]; return *((float*) ((char*)t->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)); } bool check_mat_mul( const struct ggml_tensor * y, const struct ggml_tensor * x0, const struct ggml_tensor * x1) { float * dst = (float *) y->data; float * src0 = (float *) x0->data; float * src1 = (float *) x1->data; const int64_t n00 = x0->ne[0]; const int64_t n10 = x0->ne[1]; const int64_t n20 = x0->ne[2]; const int64_t n30 = x0->ne[3]; const int64_t n01 = x1->ne[0]; const int64_t n11 = x1->ne[1]; const int64_t n21 = x1->ne[2]; const int64_t n31 = x1->ne[3]; const int64_t n02 = y->ne[0]; const int64_t n12 = y->ne[1]; const int64_t n22 = y->ne[2]; const int64_t n32 = y->ne[3]; printf("x0: [%lld, %lld, %lld, %lld]\n", n00, n10, n20, n30); for (int j = 0; j < n10; ++j) { for (int i = 0; i < n00; ++i) { printf("%6.3f ", mat_get(x0, i, j, 0, 0)); } printf("\n"); } printf("\n"); printf("x1: [%lld, %lld, %lld, %lld]\n", n01, n11, n21, n31); for (int j = 0; j < n11; ++j) { for (int i = 0; i < n01; ++i) { printf("%6.3f ", mat_get(x1, i, j, 0, 0)); } printf("\n"); } printf("\n"); printf("y: [%lld, %lld, %lld, %lld]\n", n02, n12, n22, n32); for (int j = 0; j < n12; ++j) { for (int i = 0; i < n02; ++i) { printf("%6.3f ", mat_get(y, i, j, 0, 0)); } printf("\n"); } for (int i3 = 0; i3 < n32; ++i3) { for (int i2 = 0; i2 < n22; ++i2) { for (int i1 = 0; i1 < n12; ++i1) { for (int i0 = 0; i0 < n02; ++i0) { float sum = 0.0f; for (int k = 0; k < n00; ++k) { sum += mat_get(x0, k, i0, i2, i3) * mat_get(x1, k, i1, i2, i3); } if (fabsf(sum - mat_get(y, i0, i1, i2, i3)) > 1e-5) { printf("error: i0=%d, i1=%d, i2=%d, i3=%d, sum=%f, y=%f\n", i0, i1, i2, i3, sum, mat_get(y, i0, i1, i2, i3)); assert(false); return false; } } } } } return true; } int main(int argc, const char ** argv) { struct ggml_init_params params = { .mem_size = 128*1024*1024, .mem_buffer = NULL, .no_alloc = false, }; int64_t ne[4]; // original loop: 500 int niter = 500; const char *env = getenv("GGML_NLOOP"); if (env != NULL) { niter = atoi(env); } if (argc > 1) { niter = atoi(argv[1]); } for (int iter = 0; iter < niter; ++iter) { printf("test-mul-mat0: iter:%d/%d\n", iter, niter); struct ggml_context * ctx0 = ggml_init(params); get_random_dims(ne, 4); struct ggml_tensor * x[MAX_NARGS]; // mul_mat { const int nargs = 1; for (int ndims = 2; ndims <= 4; ++ndims) { x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); ne[1] = rand()%4 + 1; x[1] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); ggml_set_param(ctx0, x[0]); struct ggml_tensor * m = ggml_mul_mat(ctx0, x[1], x[0]); struct ggml_tensor * f = ggml_sum(ctx0, m); printf("testing: mul_mat, [%lld, %lld, %lld, %lld] = [%lld, %lld, %lld, %lld] * [%lld, %lld, %lld, %lld]\n", m->ne[0], m->ne[1], m->ne[2], m->ne[3], x[1]->ne[0], x[1]->ne[1], x[1]->ne[2], x[1]->ne[3], x[0]->ne[0], x[0]->ne[1], x[0]->ne[2], x[0]->ne[3]); assert(m->ne[0] == x[1]->ne[1]); assert(m->ne[1] == x[0]->ne[1]); assert(m->ne[2] == x[0]->ne[2]); assert(m->ne[3] == x[0]->ne[3]); if (ndims <= 2) { check_gradient("mul_mat", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY); } else { struct ggml_cgraph gf = ggml_build_forward(m); ggml_graph_compute(ctx0, &gf); } check_mat_mul(m, x[1], x[0]); } } // mul_mat (transposed) { const int nargs = 1; for (int ndims = 2; ndims <= 4; ++ndims) { x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); ne[1] = ne[0]; ne[0] = rand()%4 + 1; x[1] = ggml_cont(ctx0, ggml_transpose(ctx0, get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f))); ggml_set_param(ctx0, x[0]); struct ggml_tensor * m = ggml_mul_mat(ctx0, x[1], x[0]); struct ggml_tensor * f = ggml_sum(ctx0, m); printf("testing: mul_mat, [%lld, %lld, %lld, %lld] = [%lld, %lld, %lld, %lld] * [%lld, %lld, %lld, %lld]\n", m->ne[0], m->ne[1], m->ne[2], m->ne[3], x[1]->ne[0], x[1]->ne[1], x[1]->ne[2], x[1]->ne[3], x[0]->ne[0], x[0]->ne[1], x[0]->ne[2], x[0]->ne[3]); assert(m->ne[0] == x[1]->ne[1]); assert(m->ne[1] == x[0]->ne[1]); assert(m->ne[2] == x[0]->ne[2]); assert(m->ne[3] == x[0]->ne[3]); if (ndims <= 2) { check_gradient("mul_mat", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY); } else { struct ggml_cgraph gf = ggml_build_forward(m); ggml_graph_compute(ctx0, &gf); } check_mat_mul(m, x[1], x[0]); } } ggml_free(ctx0); } return 0; }