#include #include #include #include #include #include #include #include const int N = 1 << 14; const int M = 768; // // naive implementation // void mul_mat_vec_f32_0( const float * restrict src0, const float * restrict src1, float * dst, int nrows, int ncols) { for (int i = 0; i < nrows; i++) { float sum = 0.0f; for (int j = 0; j < ncols; j++) { sum += src0[i*ncols + j]*src1[j]; } dst[i] = sum; } } // // SIMD with 8 32-bit floats // float reduce_vector8_0(__m256 v) { __m128 v1 = _mm256_extractf128_ps(v, 0); __m128 v2 = _mm256_extractf128_ps(v, 1); __m128 v3 = _mm_add_ps(v1, v2); __m128 v4 = _mm_shuffle_ps(v3, v3, 0x4e); __m128 v5 = _mm_add_ps(v3, v4); __m128 v6 = _mm_shuffle_ps(v5, v5, 0x11); __m128 v7 = _mm_add_ps(v5, v6); return _mm_cvtss_f32(v7); } // vectorized implementation using AVX void mul_mat_vec_f32_1( const float * restrict src0, const float * restrict src1, float * dst, int nrows, int ncols) { const int ncols8 = ncols & ~7; for (int i = 0; i < nrows; i++) { __m256 sum = _mm256_setzero_ps(); for (int j = 0; j < ncols8; j += 8) { __m256 a = _mm256_loadu_ps(src0 + i*ncols + j); __m256 b = _mm256_loadu_ps(src1 + j); __m256 c = _mm256_mul_ps(a, b); sum = _mm256_add_ps(sum, c); } dst[i] = reduce_vector8_0(sum); for (int j = ncols8; j < ncols; j++) { dst[i] += src0[i*ncols + j]*src1[j]; } } } void mul_mat_vec_f32_2( const float * restrict src0, const float * restrict src1, float * dst, int nrows, int ncols) { const int ncols32 = ncols & ~31; for (int i = 0; i < nrows; i++) { __m256 sum0 = _mm256_setzero_ps(); __m256 sum1 = _mm256_setzero_ps(); __m256 sum2 = _mm256_setzero_ps(); __m256 sum3 = _mm256_setzero_ps(); const float * restrict src0_row = src0 + i*ncols; for (int j = 0; j < ncols32; j += 32) { __m256 a0 = _mm256_loadu_ps(src0_row + j + 0); __m256 a1 = _mm256_loadu_ps(src0_row + j + 8); __m256 a2 = _mm256_loadu_ps(src0_row + j + 16); __m256 a3 = _mm256_loadu_ps(src0_row + j + 24); __m256 b0 = _mm256_loadu_ps(src1 + j + 0); __m256 b1 = _mm256_loadu_ps(src1 + j + 8); __m256 b2 = _mm256_loadu_ps(src1 + j + 16); __m256 b3 = _mm256_loadu_ps(src1 + j + 24); #if defined(__FMA__) sum0 = _mm256_fmadd_ps(a0, b0, sum0); sum1 = _mm256_fmadd_ps(a1, b1, sum1); sum2 = _mm256_fmadd_ps(a2, b2, sum2); sum3 = _mm256_fmadd_ps(a3, b3, sum3); #else sum0 = _mm256_add_ps(_mm256_mul_ps(a0, b0), sum0); sum1 = _mm256_add_ps(_mm256_mul_ps(a1, b1), sum1); sum2 = _mm256_add_ps(_mm256_mul_ps(a2, b2), sum2); sum3 = _mm256_add_ps(_mm256_mul_ps(a3, b3), sum3); #endif } dst[i] = reduce_vector8_0(_mm256_add_ps(_mm256_add_ps(sum0, sum1), _mm256_add_ps(sum2, sum3))); for (int j = ncols32; j < ncols; j++) { dst[i] += src0[i*ncols + j]*src1[j]; } } } // // SIMD with 8 16-bit floats // static inline float fp32_from_bits(uint32_t w) { #if defined(__OPENCL_VERSION__) return as_float(w); #elif defined(__CUDA_ARCH__) return __uint_as_float((unsigned int) w); #elif defined(__INTEL_COMPILER) return _castu32_f32(w); #elif defined(_MSC_VER) && (defined(_M_ARM) || defined(_M_ARM64)) return _CopyFloatFromInt32((__int32) w); #else union { uint32_t as_bits; float as_value; } fp32 = { w }; return fp32.as_value; #endif } static inline uint32_t fp32_to_bits(float f) { #if defined(__OPENCL_VERSION__) return as_uint(f); #elif defined(__CUDA_ARCH__) return (uint32_t) __float_as_uint(f); #elif defined(__INTEL_COMPILER) return _castf32_u32(f); #elif defined(_MSC_VER) && (defined(_M_ARM) || defined(_M_ARM64)) return (uint32_t) _CopyInt32FromFloat(f); #else union { float as_value; uint32_t as_bits; } fp32 = { f }; return fp32.as_bits; #endif } /* * Convert a 16-bit floating-point number in IEEE half-precision format, in bit representation, to * a 32-bit floating-point number in IEEE single-precision format. * * @note The implementation relies on IEEE-like (no assumption about rounding mode and no operations on denormals) * floating-point operations and bitcasts between integer and floating-point variables. */ static inline float fp16_ieee_to_fp32_value(uint16_t h) { /* * Extend the half-precision floating-point number to 32 bits and shift to the upper part of the 32-bit word: * +---+-----+------------+-------------------+ * | S |EEEEE|MM MMMM MMMM|0000 0000 0000 0000| * +---+-----+------------+-------------------+ * Bits 31 26-30 16-25 0-15 * * S - sign bit, E - bits of the biased exponent, M - bits of the mantissa, 0 - zero bits. */ const uint32_t w = (uint32_t) h << 16; /* * Extract the sign of the input number into the high bit of the 32-bit word: * * +---+----------------------------------+ * | S |0000000 00000000 00000000 00000000| * +---+----------------------------------+ * Bits 31 0-31 */ const uint32_t sign = w & UINT32_C(0x80000000); /* * Extract mantissa and biased exponent of the input number into the high bits of the 32-bit word: * * +-----+------------+---------------------+ * |EEEEE|MM MMMM MMMM|0 0000 0000 0000 0000| * +-----+------------+---------------------+ * Bits 27-31 17-26 0-16 */ const uint32_t two_w = w + w; /* * Shift mantissa and exponent into bits 23-28 and bits 13-22 so they become mantissa and exponent * of a single-precision floating-point number: * * S|Exponent | Mantissa * +-+---+-----+------------+----------------+ * |0|000|EEEEE|MM MMMM MMMM|0 0000 0000 0000| * +-+---+-----+------------+----------------+ * Bits | 23-31 | 0-22 * * Next, there are some adjustments to the exponent: * - The exponent needs to be corrected by the difference in exponent bias between single-precision and half-precision * formats (0x7F - 0xF = 0x70) * - Inf and NaN values in the inputs should become Inf and NaN values after conversion to the single-precision number. * Therefore, if the biased exponent of the half-precision input was 0x1F (max possible value), the biased exponent * of the single-precision output must be 0xFF (max possible value). We do this correction in two steps: * - First, we adjust the exponent by (0xFF - 0x1F) = 0xE0 (see exp_offset below) rather than by 0x70 suggested * by the difference in the exponent bias (see above). * - Then we multiply the single-precision result of exponent adjustment by 2**(-112) to reverse the effect of * exponent adjustment by 0xE0 less the necessary exponent adjustment by 0x70 due to difference in exponent bias. * The floating-point multiplication hardware would ensure than Inf and NaN would retain their value on at least * partially IEEE754-compliant implementations. * * Note that the above operations do not handle denormal inputs (where biased exponent == 0). However, they also do not * operate on denormal inputs, and do not produce denormal results. */ const uint32_t exp_offset = UINT32_C(0xE0) << 23; #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__) const float exp_scale = 0x1.0p-112f; #else const float exp_scale = fp32_from_bits(UINT32_C(0x7800000)); #endif const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale; /* * Convert denormalized half-precision inputs into single-precision results (always normalized). * Zero inputs are also handled here. * * In a denormalized number the biased exponent is zero, and mantissa has on-zero bits. * First, we shift mantissa into bits 0-9 of the 32-bit word. * * zeros | mantissa * +---------------------------+------------+ * |0000 0000 0000 0000 0000 00|MM MMMM MMMM| * +---------------------------+------------+ * Bits 10-31 0-9 * * Now, remember that denormalized half-precision numbers are represented as: * FP16 = mantissa * 2**(-24). * The trick is to construct a normalized single-precision number with the same mantissa and thehalf-precision input * and with an exponent which would scale the corresponding mantissa bits to 2**(-24). * A normalized single-precision floating-point number is represented as: * FP32 = (1 + mantissa * 2**(-23)) * 2**(exponent - 127) * Therefore, when the biased exponent is 126, a unit change in the mantissa of the input denormalized half-precision * number causes a change of the constructud single-precision number by 2**(-24), i.e. the same ammount. * * The last step is to adjust the bias of the constructed single-precision number. When the input half-precision number * is zero, the constructed single-precision number has the value of * FP32 = 1 * 2**(126 - 127) = 2**(-1) = 0.5 * Therefore, we need to subtract 0.5 from the constructed single-precision number to get the numerical equivalent of * the input half-precision number. */ const uint32_t magic_mask = UINT32_C(126) << 23; const float magic_bias = 0.5f; const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias; /* * - Choose either results of conversion of input as a normalized number, or as a denormalized number, depending on the * input exponent. The variable two_w contains input exponent in bits 27-31, therefore if its smaller than 2**27, the * input is either a denormal number, or zero. * - Combine the result of conversion of exponent and mantissa with the sign of the input number. */ const uint32_t denormalized_cutoff = UINT32_C(1) << 27; const uint32_t result = sign | (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value)); return fp32_from_bits(result); } /* * Convert a 32-bit floating-point number in IEEE single-precision format to a 16-bit floating-point number in * IEEE half-precision format, in bit representation. * * @note The implementation relies on IEEE-like (no assumption about rounding mode and no operations on denormals) * floating-point operations and bitcasts between integer and floating-point variables. */ static inline uint16_t fp16_ieee_from_fp32_value(float f) { #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__) const float scale_to_inf = 0x1.0p+112f; const float scale_to_zero = 0x1.0p-110f; #else const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000)); const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000)); #endif float base = (fabsf(f) * scale_to_inf) * scale_to_zero; const uint32_t w = fp32_to_bits(f); const uint32_t shl1_w = w + w; const uint32_t sign = w & UINT32_C(0x80000000); uint32_t bias = shl1_w & UINT32_C(0xFF000000); if (bias < UINT32_C(0x71000000)) { bias = UINT32_C(0x71000000); } base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base; const uint32_t bits = fp32_to_bits(base); const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00); const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF); const uint32_t nonsign = exp_bits + mantissa_bits; return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign); } void mul_mat_vec_f16_0( const uint16_t * src0, const uint16_t * src1, float * dst, int nrows, int ncols) { const int ncols8 = ncols & ~7; for (int i = 0; i < nrows; i++) { __m256 sum = _mm256_setzero_ps(); const uint16_t * src0_row = src0 + i * ncols; for (int j = 0; j < ncols8; j += 8) { __m256 a = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j))); __m256 b = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src1 + j))); #if defined(__FMA__) sum = _mm256_fmadd_ps(a, b, sum); #else sum = _mm256_add_ps(_mm256_mul_ps(a, b), sum); #endif } dst[i] = reduce_vector8_0(sum); for (int j = ncols8; j < ncols; j++) { dst[i] += fp16_ieee_to_fp32_value(src0_row[j]) * fp16_ieee_to_fp32_value(src1[j]); } } } void mul_mat_vec_f16_1( const uint16_t * src0, const uint16_t * src1, float * dst, int nrows, int ncols) { const int ncols16 = ncols & ~15; for (int i = 0; i < nrows; i++) { __m256 sum0 = _mm256_setzero_ps(); __m256 sum1 = _mm256_setzero_ps(); const uint16_t * src0_row = src0 + i * ncols; for (int j = 0; j < ncols16; j += 16) { __m256 a0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 0))); __m256 a1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 8))); __m256 b0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src1 + j))); __m256 b1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src1 + j + 8))); #if defined(__FMA__) sum0 = _mm256_fmadd_ps(a0, b0, sum0); sum1 = _mm256_fmadd_ps(a1, b1, sum1); #else sum0 = _mm256_add_ps(_mm256_mul_ps(a0, b0), sum0); sum1 = _mm256_add_ps(_mm256_mul_ps(a1, b1), sum1); #endif } dst[i] = reduce_vector8_0(sum0) + reduce_vector8_0(sum1); for (int j = ncols16; j < ncols; j++) { dst[i] += fp16_ieee_to_fp32_value(src0_row[j]) * fp16_ieee_to_fp32_value(src1[j]); } } } void mul_mat_vec_f16_2( const uint16_t * src0, const uint16_t * src1, float * dst, int nrows, int ncols) { const int ncols32 = ncols & ~31; for (int i = 0; i < nrows; i++) { __m256 sum0 = _mm256_setzero_ps(); __m256 sum1 = _mm256_setzero_ps(); __m256 sum2 = _mm256_setzero_ps(); __m256 sum3 = _mm256_setzero_ps(); const uint16_t * src0_row = src0 + i * ncols; for (int j = 0; j < ncols32; j += 32) { __m256 a0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 0))); __m256 a1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 8))); __m256 a2 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 16))); __m256 a3 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 24))); __m256 b0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src1 + j))); __m256 b1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src1 + j + 8))); __m256 b2 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src1 + j + 16))); __m256 b3 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src1 + j + 24))); #if defined(__FMA__) sum0 = _mm256_fmadd_ps(a0, b0, sum0); sum1 = _mm256_fmadd_ps(a1, b1, sum1); sum2 = _mm256_fmadd_ps(a2, b2, sum2); sum3 = _mm256_fmadd_ps(a3, b3, sum3); #else sum0 = _mm256_add_ps(_mm256_mul_ps(a0, b0), sum0); sum1 = _mm256_add_ps(_mm256_mul_ps(a1, b1), sum1); sum2 = _mm256_add_ps(_mm256_mul_ps(a2, b2), sum2); sum3 = _mm256_add_ps(_mm256_mul_ps(a3, b3), sum3); #endif } dst[i] = reduce_vector8_0(sum0) + reduce_vector8_0(sum1) + reduce_vector8_0(sum2) + reduce_vector8_0(sum3); for (int j = ncols32; j < ncols; j++) { dst[i] += fp16_ieee_to_fp32_value(src0_row[j]) * fp16_ieee_to_fp32_value(src1[j]); } } } void mul_mat_vec_f16_3( const uint16_t * src0, const float * src1, float * dst, int nrows, int ncols) { const int ncols32 = ncols & ~31; for (int i = 0; i < nrows; i++) { __m256 sum0 = _mm256_setzero_ps(); __m256 sum1 = _mm256_setzero_ps(); __m256 sum2 = _mm256_setzero_ps(); __m256 sum3 = _mm256_setzero_ps(); const uint16_t * src0_row = src0 + i * ncols; for (int j = 0; j < ncols32; j += 32) { __m256 a0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 0))); __m256 a1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 8))); __m256 a2 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 16))); __m256 a3 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 24))); __m256 b0 = _mm256_loadu_ps(src1 + j); __m256 b1 = _mm256_loadu_ps(src1 + j + 8); __m256 b2 = _mm256_loadu_ps(src1 + j + 16); __m256 b3 = _mm256_loadu_ps(src1 + j + 24); #if defined(__FMA__) sum0 = _mm256_fmadd_ps(a0, b0, sum0); sum1 = _mm256_fmadd_ps(a1, b1, sum1); sum2 = _mm256_fmadd_ps(a2, b2, sum2); sum3 = _mm256_fmadd_ps(a3, b3, sum3); #else sum0 = _mm256_add_ps(_mm256_mul_ps(a0, b0), sum0); sum1 = _mm256_add_ps(_mm256_mul_ps(a1, b1), sum1); sum2 = _mm256_add_ps(_mm256_mul_ps(a2, b2), sum2); sum3 = _mm256_add_ps(_mm256_mul_ps(a3, b3), sum3); #endif } dst[i] = reduce_vector8_0(sum0) + reduce_vector8_0(sum1) + reduce_vector8_0(sum2) + reduce_vector8_0(sum3); for (int j = ncols32; j < ncols; j++) { dst[i] += fp16_ieee_to_fp32_value(src0_row[j]) * fp16_ieee_to_fp32_value(src1[j]); } } } uint64_t get_time_us() { struct timeval tv; gettimeofday(&tv, NULL); return tv.tv_sec * 1000000 + tv.tv_usec; } int main(int argc, const char ** argv) { float * src0 = malloc(sizeof(float)*N*M); float * src1 = malloc(sizeof(float)*M); float * dst = malloc(sizeof(float)*N); //float * src0 = (float *)(aligned_alloc(64, sizeof(float)*N*M)); //float * src1 = (float *)(aligned_alloc(64, sizeof(float)*M)); //float * dst = (float *)(aligned_alloc(64, sizeof(float)*N)); for (int i = 0; i < N*M; i++) { src0[i] = rand() / (float)RAND_MAX; } for (int i = 0; i < M; i++) { src1[i] = rand() / (float)RAND_MAX; } // convert src0 and src1 to __fp16 uint16_t * src0_fp16 = (uint16_t *)(malloc(sizeof(uint16_t)*N*M)); uint16_t * src1_fp16 = (uint16_t *)(malloc(sizeof(uint16_t)*M)); //uint16_t * src0_fp16 = (uint16_t *)(aligned_alloc(64, sizeof(uint16_t)*N*M)); //uint16_t * src1_fp16 = (uint16_t *)(aligned_alloc(64, sizeof(uint16_t)*M)); { const uint64_t t_start = get_time_us(); for (int i = 0; i < N*M; i++) { src0_fp16[i] = fp16_ieee_from_fp32_value(src0[i]); //printf("%f %f\n", src0[i], fp16_ieee_to_fp32_value(src0_fp16[i])); //assert(!isnan(fp16_ieee_to_fp32_value(src0_fp16[i]))); } for (int i = 0; i < M; i++) { src1_fp16[i] = fp16_ieee_from_fp32_value(src1[i]); } const uint64_t t_end = get_time_us(); printf("convert time: %f ms\n", (t_end - t_start) / 1000.0); } for (int i = 0; i < 16; ++i) { printf("%f %f\n", src0[i], fp16_ieee_to_fp32_value(src0_fp16[i])); } int method = 0; if (argc > 1) { method = atoi(argv[1]); } const int nIter = 1000; const clock_t start = clock(); const uint64_t start_us = get_time_us(); double iM = 1.0/M; double sum = 0.0f; for (int i = 0; i < nIter; i++) { if (method == 0) { mul_mat_vec_f32_0(src0, src1, dst, N, M); } if (method == 1) { mul_mat_vec_f32_1(src0, src1, dst, N, M); } if (method == 2) { mul_mat_vec_f32_2(src0, src1, dst, N, M); } if (method == 3) { mul_mat_vec_f16_0(src0_fp16, src1_fp16, dst, N, M); } if (method == 4) { mul_mat_vec_f16_1(src0_fp16, src1_fp16, dst, N, M); } if (method == 5) { mul_mat_vec_f16_2(src0_fp16, src1_fp16, dst, N, M); } if (method == 6) { mul_mat_vec_f16_3(src0_fp16, src1, dst, N, M); } } for (int i = 0; i < N; i++) { sum += dst[i]*iM; } { const clock_t end = clock(); const uint64_t end_us = get_time_us(); printf("%s: elapsed ticks: %ld\n", __func__, end - start); printf("%s: elapsed us: %ld\n", __func__, end_us - start_us); } printf("%f\n", sum); free(src0); free(src1); free(dst); free(src0_fp16); free(src1_fp16); return 0; }