#include "ggml/ggml.h" #include #include #include int main(int argc, const char ** argv) { struct ggml_init_params params = { .mem_size = 128*1024*1024, .mem_buffer = NULL, .no_alloc = false, }; struct ggml_context * ctx0 = ggml_init(params); { struct ggml_tensor * x = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); ggml_set_param(ctx0, x); struct ggml_tensor * a = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); struct ggml_tensor * b = ggml_mul(ctx0, x, x); struct ggml_tensor * f = ggml_mul(ctx0, b, a); // a*x^2 // 2*a*x ggml_print_objects(ctx0); struct ggml_cgraph gf = ggml_build_forward(f); struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false); ggml_set_f32(x, 2.0f); ggml_set_f32(a, 3.0f); ggml_graph_reset(&gf); ggml_set_f32(f->grad, 1.0f); ggml_graph_compute(ctx0, &gb); printf("f = %f\n", ggml_get_f32_1d(f, 0)); printf("df/dx = %f\n", ggml_get_f32_1d(x->grad, 0)); assert(ggml_get_f32_1d(f, 0) == 12.0f); assert(ggml_get_f32_1d(x->grad, 0) == 12.0f); ggml_set_f32(x, 3.0f); ggml_graph_reset(&gf); ggml_set_f32(f->grad, 1.0f); ggml_graph_compute(ctx0, &gb); printf("f = %f\n", ggml_get_f32_1d(f, 0)); printf("df/dx = %f\n", ggml_get_f32_1d(x->grad, 0)); assert(ggml_get_f32_1d(f, 0) == 27.0f); assert(ggml_get_f32_1d(x->grad, 0) == 18.0f); ggml_graph_dump_dot(&gf, NULL, "test1-1-forward.dot"); ggml_graph_dump_dot(&gb, &gf, "test1-1-backward.dot"); } /////////////////////////////////////////////////////////////// { struct ggml_tensor * x1 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); struct ggml_tensor * x2 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); struct ggml_tensor * x3 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); ggml_set_f32(x1, 3.0f); ggml_set_f32(x2, 1.0f); ggml_set_f32(x3, 0.0f); ggml_set_param(ctx0, x1); ggml_set_param(ctx0, x2); struct ggml_tensor * y = ggml_add(ctx0, ggml_mul(ctx0, x1, x1), ggml_mul(ctx0, x1, x2)); struct ggml_cgraph gf = ggml_build_forward(y); struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false); ggml_graph_reset(&gf); ggml_set_f32(y->grad, 1.0f); ggml_graph_compute(ctx0, &gb); printf("y = %f\n", ggml_get_f32_1d(y, 0)); printf("df/dx1 = %f\n", ggml_get_f32_1d(x1->grad, 0)); printf("df/dx2 = %f\n", ggml_get_f32_1d(x2->grad, 0)); assert(ggml_get_f32_1d(y, 0) == 12.0f); assert(ggml_get_f32_1d(x1->grad, 0) == 7.0f); assert(ggml_get_f32_1d(x2->grad, 0) == 3.0f); struct ggml_tensor * g1 = x1->grad; struct ggml_tensor * g2 = x2->grad; struct ggml_cgraph gbb = ggml_build_backward(ctx0, &gb, true); ggml_graph_reset(&gb); ggml_set_f32(g1->grad, 1.0f); ggml_set_f32(g2->grad, 1.0f); ggml_graph_compute(ctx0, &gbb); printf("H * [1, 1] = [ %f %f ]\n", ggml_get_f32_1d(x1->grad, 0), ggml_get_f32_1d(x2->grad, 0)); assert(ggml_get_f32_1d(x1->grad, 0) == 3.0f); assert(ggml_get_f32_1d(x2->grad, 0) == 1.0f); ggml_graph_dump_dot(&gf, NULL, "test1-2-forward.dot"); ggml_graph_dump_dot(&gb, &gf, "test1-2-backward.dot"); } /////////////////////////////////////////////////////////////// { struct ggml_tensor * x1 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); struct ggml_tensor * x2 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); ggml_set_param(ctx0, x1); ggml_set_param(ctx0, x2); struct ggml_tensor * y = ggml_mul(ctx0, ggml_add(ctx0, ggml_mul(ctx0, x1, x1), ggml_mul(ctx0, x1, x2)), x1); struct ggml_cgraph gf = ggml_build_forward(y); struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false); ggml_set_f32(x1, 3.0f); ggml_set_f32(x2, 4.0f); ggml_graph_reset(&gf); ggml_set_f32(y->grad, 1.0f); ggml_graph_compute(ctx0, &gb); printf("y = %f\n", ggml_get_f32_1d(y, 0)); printf("df/dx1 = %f\n", ggml_get_f32_1d(x1->grad, 0)); printf("df/dx2 = %f\n", ggml_get_f32_1d(x2->grad, 0)); assert(ggml_get_f32_1d(y, 0) == 63.0f); assert(ggml_get_f32_1d(x1->grad, 0) == 51.0f); assert(ggml_get_f32_1d(x2->grad, 0) == 9.0f); ggml_graph_dump_dot(&gf, NULL, "test1-3-forward.dot"); ggml_graph_dump_dot(&gb, &gf, "test1-3-backward.dot"); } /////////////////////////////////////////////////////////////// { struct ggml_tensor * x1 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); struct ggml_tensor * x2 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); struct ggml_tensor * x3 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); ggml_set_param(ctx0, x1); ggml_set_param(ctx0, x2); ggml_set_param(ctx0, x3); struct ggml_tensor * y = ggml_mul(ctx0, ggml_mul(ctx0, ggml_mul(ctx0, x1, x1), ggml_mul(ctx0, x2, x2)), x3); struct ggml_cgraph gf = ggml_build_forward(y); struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false); ggml_set_f32(x1, 1.0f); ggml_set_f32(x2, 2.0f); ggml_set_f32(x3, 3.0f); ggml_graph_reset(&gf); ggml_set_f32(y->grad, 1.0f); ggml_graph_compute(ctx0, &gb); printf("y = %f\n", ggml_get_f32_1d(y, 0)); printf("df/dx1 = %f\n", ggml_get_f32_1d(x1->grad, 0)); printf("df/dx2 = %f\n", ggml_get_f32_1d(x2->grad, 0)); printf("df/dx3 = %f\n", ggml_get_f32_1d(x3->grad, 0)); assert(ggml_get_f32_1d(y, 0) == 12.0f); assert(ggml_get_f32_1d(x1->grad, 0) == 24.0f); assert(ggml_get_f32_1d(x2->grad, 0) == 12.0f); assert(ggml_get_f32_1d(x3->grad, 0) == 4.0f); struct ggml_tensor * g1 = x1->grad; struct ggml_tensor * g2 = x2->grad; struct ggml_tensor * g3 = x3->grad; struct ggml_cgraph gbb = ggml_build_backward(ctx0, &gb, true); ggml_graph_reset(&gb); ggml_set_f32(g1->grad, 1.0f); ggml_set_f32(g2->grad, 1.0f); ggml_set_f32(g3->grad, 1.0f); ggml_graph_compute(ctx0, &gbb); printf("H * [1, 1, 1] = [ %f %f %f ]\n", ggml_get_f32_1d(x1->grad, 0), ggml_get_f32_1d(x2->grad, 0), ggml_get_f32_1d(x3->grad, 0)); assert(ggml_get_f32_1d(x1->grad, 0) == 56.0f); assert(ggml_get_f32_1d(x2->grad, 0) == 34.0f); assert(ggml_get_f32_1d(x3->grad, 0) == 12.0f); ggml_graph_dump_dot(&gf, NULL, "test1-4-forward.dot"); ggml_graph_dump_dot(&gb, &gf, "test1-4-backward.dot"); } /////////////////////////////////////////////////////////////// { struct ggml_tensor * x1 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 3); struct ggml_tensor * x2 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 3); ggml_set_param(ctx0, x1); ggml_set_param(ctx0, x2); struct ggml_tensor * y = ggml_sum(ctx0, ggml_mul(ctx0, x1, x2)); struct ggml_cgraph gf = ggml_build_forward(y); struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false); ggml_set_f32(x1, 3.0f); ggml_set_f32(x2, 5.0f); ggml_graph_reset(&gf); ggml_set_f32(y->grad, 1.0f); ggml_graph_compute(ctx0, &gb); printf("y = %f\n", ggml_get_f32_1d(y, 0)); printf("df/dx1 = %f %f %f\n", ggml_get_f32_1d(x1->grad, 0), ggml_get_f32_1d(x1->grad, 1), ggml_get_f32_1d(x1->grad, 2)); printf("df/dx2 = %f %f %f\n", ggml_get_f32_1d(x2->grad, 0), ggml_get_f32_1d(x2->grad, 1), ggml_get_f32_1d(x2->grad, 2)); assert(ggml_get_f32_1d(y, 0) == 45.0f); assert(ggml_get_f32_1d(x1->grad, 0) == 5.0f); assert(ggml_get_f32_1d(x2->grad, 0) == 3.0f); assert(ggml_get_f32_1d(x1->grad, 1) == 5.0f); assert(ggml_get_f32_1d(x2->grad, 1) == 3.0f); assert(ggml_get_f32_1d(x1->grad, 2) == 5.0f); assert(ggml_get_f32_1d(x2->grad, 2) == 3.0f); ggml_graph_dump_dot(&gf, NULL, "test1-5-forward.dot"); ggml_graph_dump_dot(&gb, &gf, "test1-5-backward.dot"); } /////////////////////////////////////////////////////////////// { struct ggml_tensor * x1 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 3); struct ggml_tensor * x2 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 3); ggml_set_param(ctx0, x1); ggml_set_param(ctx0, x2); struct ggml_tensor * y = ggml_sum(ctx0, ggml_add(ctx0, ggml_mul(ctx0, x1, x2), ggml_mul(ctx0, ggml_repeat(ctx0, ggml_new_f32(ctx0, -2.0f), x1), ggml_mul(ctx0, x1, x1) ) ) ); struct ggml_cgraph gf = ggml_build_forward(y); struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false); ggml_set_f32(x1, 3.0f); ggml_set_f32(x2, 5.0f); ggml_graph_reset(&gf); ggml_set_f32(y->grad, 1.0f); ggml_graph_compute(ctx0, &gb); printf("y = %f\n", ggml_get_f32_1d(y, 0)); printf("df/dx1 = %f %f %f\n", ggml_get_f32_1d(x1->grad, 0), ggml_get_f32_1d(x1->grad, 1), ggml_get_f32_1d(x1->grad, 2)); printf("df/dx2 = %f %f %f\n", ggml_get_f32_1d(x2->grad, 0), ggml_get_f32_1d(x2->grad, 1), ggml_get_f32_1d(x2->grad, 2)); assert(ggml_get_f32_1d(y, 0) == -9.0f); assert(ggml_get_f32_1d(x1->grad, 0) == -7.0f); assert(ggml_get_f32_1d(x1->grad, 1) == -7.0f); assert(ggml_get_f32_1d(x1->grad, 2) == -7.0f); assert(ggml_get_f32_1d(x2->grad, 0) == 3.0f); assert(ggml_get_f32_1d(x2->grad, 1) == 3.0f); assert(ggml_get_f32_1d(x2->grad, 2) == 3.0f); ggml_graph_dump_dot(&gf, NULL, "test1-6-forward.dot"); ggml_graph_dump_dot(&gb, &gf, "test1-6-backward.dot"); } /////////////////////////////////////////////////////////////// { struct ggml_tensor * x1 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 3); struct ggml_tensor * x2 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 3); ggml_set_param(ctx0, x1); ggml_set_param(ctx0, x2); struct ggml_tensor * y = ggml_sum(ctx0, ggml_sub(ctx0, ggml_mul(ctx0, x1, x2), ggml_mul(ctx0, ggml_mul(ctx0, x1, x1), ggml_repeat(ctx0, ggml_new_f32(ctx0, -2.0f), x1) ) ) ); struct ggml_cgraph gf = ggml_build_forward(y); struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false); ggml_set_f32(x1, 3.0f); ggml_set_f32(x2, 5.0f); ggml_graph_reset(&gf); ggml_set_f32(y->grad, 1.0f); ggml_graph_compute(ctx0, &gb); printf("y = %f\n", ggml_get_f32_1d(y, 0)); printf("df/dx1 = %f %f %f\n", ggml_get_f32_1d(x1->grad, 0), ggml_get_f32_1d(x1->grad, 1), ggml_get_f32_1d(x1->grad, 2)); printf("df/dx2 = %f %f %f\n", ggml_get_f32_1d(x2->grad, 0), ggml_get_f32_1d(x2->grad, 1), ggml_get_f32_1d(x2->grad, 2)); assert(ggml_get_f32_1d(y, 0) == 99.0f); assert(ggml_get_f32_1d(x1->grad, 0) == 17.0f); assert(ggml_get_f32_1d(x1->grad, 1) == 17.0f); assert(ggml_get_f32_1d(x1->grad, 2) == 17.0f); assert(ggml_get_f32_1d(x2->grad, 0) == 3.0f); assert(ggml_get_f32_1d(x2->grad, 1) == 3.0f); assert(ggml_get_f32_1d(x2->grad, 2) == 3.0f); ggml_graph_dump_dot(&gf, NULL, "test1-7-forward.dot"); ggml_graph_dump_dot(&gb, &gf, "test1-7-backward.dot"); } /////////////////////////////////////////////////////////////// { struct ggml_tensor * x1 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 3); struct ggml_tensor * x2 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 3); ggml_set_param(ctx0, x1); ggml_set_param(ctx0, x2); struct ggml_tensor * y = ggml_abs(ctx0, ggml_sub(ctx0, x1, x2) ); struct ggml_cgraph gf = ggml_build_forward(y); struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false); ggml_set_f32(x1, 3.0f); ggml_set_f32(x2, 5.0f); ggml_graph_reset(&gf); ggml_set_f32(y->grad, 1.0f); ggml_graph_compute(ctx0, &gb); printf("y = %f\n", ggml_get_f32_1d(y, 0)); printf("df/dx1 = %f %f %f\n", ggml_get_f32_1d(x1->grad, 0), ggml_get_f32_1d(x1->grad, 1), ggml_get_f32_1d(x1->grad, 2)); printf("df/dx2 = %f %f %f\n", ggml_get_f32_1d(x2->grad, 0), ggml_get_f32_1d(x2->grad, 1), ggml_get_f32_1d(x2->grad, 2)); assert(ggml_get_f32_1d(y, 0) == 2.0f); assert(ggml_get_f32_1d(x1->grad, 0) == -1.0f); assert(ggml_get_f32_1d(x1->grad, 1) == -1.0f); assert(ggml_get_f32_1d(x1->grad, 2) == -1.0f); assert(ggml_get_f32_1d(x2->grad, 0) == 1.0f); assert(ggml_get_f32_1d(x2->grad, 1) == 1.0f); assert(ggml_get_f32_1d(x2->grad, 2) == 1.0f); ggml_set_f32(x1, 7.0f); ggml_set_f32(x2, 5.0f); ggml_graph_reset(&gf); ggml_set_f32(y->grad, 1.0f); ggml_graph_compute(ctx0, &gb); printf("y = %f\n", ggml_get_f32_1d(y, 0)); printf("df/dx1 = %f %f %f\n", ggml_get_f32_1d(x1->grad, 0), ggml_get_f32_1d(x1->grad, 1), ggml_get_f32_1d(x1->grad, 2)); printf("df/dx2 = %f %f %f\n", ggml_get_f32_1d(x2->grad, 0), ggml_get_f32_1d(x2->grad, 1), ggml_get_f32_1d(x2->grad, 2)); assert(ggml_get_f32_1d(y, 0) == 2.0f); assert(ggml_get_f32_1d(x1->grad, 0) == 1.0f); assert(ggml_get_f32_1d(x1->grad, 1) == 1.0f); assert(ggml_get_f32_1d(x1->grad, 2) == 1.0f); assert(ggml_get_f32_1d(x2->grad, 0) == -1.0f); assert(ggml_get_f32_1d(x2->grad, 1) == -1.0f); assert(ggml_get_f32_1d(x2->grad, 2) == -1.0f); ggml_graph_dump_dot(&gf, NULL, "test1-8-forward.dot"); ggml_graph_dump_dot(&gb, &gf, "test1-8-backward.dot"); } ggml_free(ctx0); return 0; }