#include "ggml/ggml.h" #include #include #include #include bool is_close(float a, float b, float epsilon) { return fabs(a - b) < epsilon; } int main(int argc, const char ** argv) { struct ggml_init_params params = { .mem_size = 128*1024*1024, .mem_buffer = NULL, .no_alloc = false, }; //struct ggml_opt_params opt_params = ggml_opt_default_params(GGML_OPT_LBFGS); struct ggml_opt_params opt_params = ggml_opt_default_params(GGML_OPT_ADAM); opt_params.adam.alpha = 0.01f; // original threads: 8 int nthreads = 8; const char *env = getenv("GGML_NTHREADS"); if (env != NULL) { nthreads = atoi(env); } if (argc > 1) { nthreads = atoi(argv[1]); } opt_params.n_threads = nthreads; printf("test2: n_threads:%d\n", opt_params.n_threads); const float xi[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f , 6.0f, 7.0f, 8.0f, 9.0f, 10.0f, }; float yi[] = { 15.0f, 25.0f, 35.0f, 45.0f, 55.0f, 65.0f, 75.0f, 85.0f, 95.0f, 105.0f, }; const int n = sizeof(xi)/sizeof(xi[0]); struct ggml_context * ctx0 = ggml_init(params); struct ggml_tensor * x = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, n); struct ggml_tensor * y = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, n); for (int i = 0; i < n; i++) { ((float *) x->data)[i] = xi[i]; ((float *) y->data)[i] = yi[i]; } { struct ggml_tensor * t0 = ggml_new_f32(ctx0, 0.0f); struct ggml_tensor * t1 = ggml_new_f32(ctx0, 0.0f); // initialize auto-diff parameters: ggml_set_param(ctx0, t0); ggml_set_param(ctx0, t1); // f = sum_i[(t0 + t1*x_i - y_i)^2]/(2n) struct ggml_tensor * f = ggml_div(ctx0, ggml_sum(ctx0, ggml_sqr(ctx0, ggml_sub(ctx0, ggml_add(ctx0, ggml_mul(ctx0, x, ggml_repeat(ctx0, t1, x)), ggml_repeat(ctx0, t0, x)), y) ) ), ggml_new_f32(ctx0, 2.0f*n)); enum ggml_opt_result res = ggml_opt(NULL, opt_params, f); assert(res == GGML_OPT_OK); printf("t0 = %f\n", ggml_get_f32_1d(t0, 0)); printf("t1 = %f\n", ggml_get_f32_1d(t1, 0)); assert(is_close(ggml_get_f32_1d(t0, 0), 5.0f, 1e-3f)); assert(is_close(ggml_get_f32_1d(t1, 0), 10.0f, 1e-3f)); } { struct ggml_tensor * t0 = ggml_new_f32(ctx0, -1.0f); struct ggml_tensor * t1 = ggml_new_f32(ctx0, 9.0f); ggml_set_param(ctx0, t0); ggml_set_param(ctx0, t1); // f = 0.5*sum_i[abs(t0 + t1*x_i - y_i)]/n struct ggml_tensor * f = ggml_mul(ctx0, ggml_new_f32(ctx0, 1.0/(2*n)), ggml_sum(ctx0, ggml_abs(ctx0, ggml_sub(ctx0, ggml_add(ctx0, ggml_mul(ctx0, x, ggml_repeat(ctx0, t1, x)), ggml_repeat(ctx0, t0, x)), y) ) ) ); enum ggml_opt_result res = ggml_opt(NULL, opt_params, f); assert(res == GGML_OPT_OK); assert(is_close(ggml_get_f32_1d(t0, 0), 5.0f, 1e-2f)); assert(is_close(ggml_get_f32_1d(t1, 0), 10.0f, 1e-2f)); } { struct ggml_tensor * t0 = ggml_new_f32(ctx0, 5.0f); struct ggml_tensor * t1 = ggml_new_f32(ctx0, -4.0f); ggml_set_param(ctx0, t0); ggml_set_param(ctx0, t1); // f = t0^2 + t1^2 struct ggml_tensor * f = ggml_add(ctx0, ggml_sqr(ctx0, t0), ggml_sqr(ctx0, t1) ); enum ggml_opt_result res = ggml_opt(NULL, opt_params, f); assert(res == GGML_OPT_OK); assert(is_close(ggml_get_f32_1d(f, 0), 0.0f, 1e-3f)); assert(is_close(ggml_get_f32_1d(t0, 0), 0.0f, 1e-3f)); assert(is_close(ggml_get_f32_1d(t1, 0), 0.0f, 1e-3f)); } ///////////////////////////////////////// { struct ggml_tensor * t0 = ggml_new_f32(ctx0, -7.0f); struct ggml_tensor * t1 = ggml_new_f32(ctx0, 8.0f); ggml_set_param(ctx0, t0); ggml_set_param(ctx0, t1); // f = (t0 + 2*t1 - 7)^2 + (2*t0 + t1 - 5)^2 struct ggml_tensor * f = ggml_add(ctx0, ggml_sqr(ctx0, ggml_sub(ctx0, ggml_add(ctx0, t0, ggml_mul(ctx0, t1, ggml_new_f32(ctx0, 2.0f))), ggml_new_f32(ctx0, 7.0f) ) ), ggml_sqr(ctx0, ggml_sub(ctx0, ggml_add(ctx0, ggml_mul(ctx0, t0, ggml_new_f32(ctx0, 2.0f)), t1), ggml_new_f32(ctx0, 5.0f) ) ) ); enum ggml_opt_result res = ggml_opt(NULL, opt_params, f); assert(res == GGML_OPT_OK); assert(is_close(ggml_get_f32_1d(f, 0), 0.0f, 1e-3f)); assert(is_close(ggml_get_f32_1d(t0, 0), 1.0f, 1e-3f)); assert(is_close(ggml_get_f32_1d(t1, 0), 3.0f, 1e-3f)); } ggml_free(ctx0); return 0; }