#define LLAMA_API_INTERNAL #include "sampling.h" #include struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params) { struct llama_sampling_context * result = new llama_sampling_context(); result->params = params; result->grammar = nullptr; // if there is a grammar, parse it if (!params.grammar.empty()) { result->parsed_grammar = grammar_parser::parse(params.grammar.c_str()); // will be empty (default) if there are parse errors if (result->parsed_grammar.rules.empty()) { fprintf(stderr, "%s: failed to parse grammar\n", __func__); delete result; return nullptr; } // Ensure that there is a "root" node. if (result->parsed_grammar.symbol_ids.find("root") == result->parsed_grammar.symbol_ids.end()) { fprintf(stderr, "%s: grammar does not contain a 'root' symbol\n", __func__); delete result; return nullptr; } std::vector grammar_rules(result->parsed_grammar.c_rules()); result->grammar = llama_grammar_init( grammar_rules.data(), grammar_rules.size(), result->parsed_grammar.symbol_ids.at("root")); } result->prev.resize(params.n_prev); llama_sampling_set_rng_seed(result, params.seed); return result; } void llama_sampling_free(struct llama_sampling_context * ctx) { if (ctx->grammar != NULL) { llama_grammar_free(ctx->grammar); } delete ctx; } void llama_sampling_reset(llama_sampling_context * ctx) { if (ctx->grammar != NULL) { llama_grammar_free(ctx->grammar); ctx->grammar = NULL; } if (!ctx->parsed_grammar.rules.empty()) { std::vector grammar_rules(ctx->parsed_grammar.c_rules()); ctx->grammar = llama_grammar_init( grammar_rules.data(), grammar_rules.size(), ctx->parsed_grammar.symbol_ids.at("root")); } std::fill(ctx->prev.begin(), ctx->prev.end(), 0); ctx->cur.clear(); } void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed) { if (seed == LLAMA_DEFAULT_SEED) { seed = time(NULL); } ctx->rng.seed(seed); } void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst) { if (dst->grammar) { llama_grammar_free(dst->grammar); dst->grammar = nullptr; } if (src->grammar) { dst->grammar = llama_grammar_copy(src->grammar); } dst->prev = src->prev; } llama_token llama_sampling_last(llama_sampling_context * ctx) { return ctx->prev.back(); } std::string llama_sampling_prev_str(llama_sampling_context * ctx_sampling, llama_context * ctx_main, int n) { const int size = ctx_sampling->prev.size(); n = std::min(n, size); std::string result; for (int i = size - n; i < size; i++) { result += llama_token_to_piece(ctx_main, ctx_sampling->prev[i]); } return result; } std::string llama_sampling_print(const llama_sampling_params & params) { char result[1024]; snprintf(result, sizeof(result), "\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n" "\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, min_p = %.3f, typical_p = %.3f, temp = %.3f\n" "\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f", params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present, params.top_k, params.tfs_z, params.top_p, params.min_p, params.typical_p, params.temp, params.mirostat, params.mirostat_eta, params.mirostat_tau); return std::string(result); } std::string llama_sampling_order_print(const llama_sampling_params & params) { std::string result = "CFG -> Penalties "; if (params.mirostat == 0) { for (auto sampler_type : params.samplers_sequence) { const auto sampler_type_name = sampler_type_to_name_string(sampler_type); if (!sampler_type_name.empty()) { result += "-> " + sampler_type_name + " "; } } } else { result += "-> mirostat "; } return result; } // no reasons to expose this function in header static void sampler_queue( struct llama_context * ctx_main, const llama_sampling_params & params, llama_token_data_array & cur_p, size_t min_keep) { const float temp = params.temp; const float dynatemp_range = params.dynatemp_range; const float dynatemp_exponent = params.dynatemp_exponent; const int32_t top_k = params.top_k; const float top_p = params.top_p; const float min_p = params.min_p; const float tfs_z = params.tfs_z; const float typical_p = params.typical_p; const std::vector & samplers_sequence = params.samplers_sequence; for (auto sampler_type : samplers_sequence) { switch (sampler_type) { case llama_sampler_type::TOP_K : llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep); break; case llama_sampler_type::TFS_Z : llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep); break; case llama_sampler_type::TYPICAL_P: llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep); break; case llama_sampler_type::TOP_P : llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep); break; case llama_sampler_type::MIN_P : llama_sample_min_p (ctx_main, &cur_p, min_p, min_keep); break; case llama_sampler_type::TEMPERATURE: if (dynatemp_range > 0) { float dynatemp_min = std::max(0.0f, temp - dynatemp_range); float dynatemp_max = std::max(0.0f, temp + dynatemp_range); llama_sample_entropy(ctx_main, &cur_p, dynatemp_min, dynatemp_max, dynatemp_exponent); } else { llama_sample_temp(ctx_main, &cur_p, temp); } break; default : break; } } } static llama_token llama_sampling_sample_impl( struct llama_sampling_context * ctx_sampling, struct llama_context * ctx_main, struct llama_context * ctx_cfg, const int idx, bool is_resampling) { // Add a parameter to indicate if we are resampling const llama_sampling_params & params = ctx_sampling->params; const float temp = params.temp; const int mirostat = params.mirostat; const float mirostat_tau = params.mirostat_tau; const float mirostat_eta = params.mirostat_eta; std::vector original_logits; auto cur_p = llama_sampling_prepare(ctx_sampling, ctx_main, ctx_cfg, idx, !is_resampling, &original_logits); if (!is_resampling) { GGML_ASSERT(!original_logits.empty()); } llama_token id = 0; // Get a pointer to the logits float * logits = llama_get_logits_ith(ctx_main, idx); if (temp < 0.0) { // greedy sampling, with probs llama_sample_softmax(ctx_main, &cur_p); id = cur_p.data[0].id; } else if (temp == 0.0) { // greedy sampling, no probs id = llama_sample_token_greedy(ctx_main, &cur_p); } else { if (mirostat == 1) { const int mirostat_m = 100; llama_sample_temp(ctx_main, &cur_p, temp); id = llama_sample_token_mirostat(ctx_main, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_sampling->mirostat_mu); } else if (mirostat == 2) { llama_sample_temp(ctx_main, &cur_p, temp); id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu); } else { // temperature sampling size_t min_keep = std::max(1, params.min_keep); sampler_queue(ctx_main, params, cur_p, min_keep); id = llama_sample_token_with_rng(ctx_main, &cur_p, ctx_sampling->rng); //{ // const int n_top = 10; // LOG("top %d candidates:\n", n_top); // for (int i = 0; i < n_top; i++) { // const llama_token id = cur_p.data[i].id; // (void)id; // To avoid a warning that id is unused when logging is disabled. // LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx_main, id).c_str(), cur_p.data[i].p); // } //} //LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx_main, id).c_str()); } } if (ctx_sampling->grammar != NULL && !is_resampling) { // Create an array with a single token data element for the sampled id llama_token_data single_token_data = {id, logits[id], 0.0f}; llama_token_data_array single_token_data_array = { &single_token_data, 1, false }; // Apply grammar constraints to the single token llama_sample_grammar(ctx_main, &single_token_data_array, ctx_sampling->grammar); // Check if the token is valid according to the grammar by seeing if its logit has been set to -INFINITY bool is_valid = single_token_data_array.data[0].logit != -INFINITY; // If the token is not valid according to the grammar, perform resampling if (!is_valid) { LOG("Resampling because token %d: '%s' does not meet grammar rules\n", id, llama_token_to_piece(ctx_main, id).c_str()); // Restore logits from the copy std::copy(original_logits.begin(), original_logits.end(), logits); return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, true); // Pass true for is_resampling } } return id; } static llama_token_data_array llama_sampling_prepare_impl( struct llama_sampling_context * ctx_sampling, struct llama_context * ctx_main, struct llama_context * ctx_cfg, const int idx, bool apply_grammar, std::vector * original_logits) { const llama_sampling_params & params = ctx_sampling->params; const int n_vocab = llama_n_vocab(llama_get_model(ctx_main)); const int32_t penalty_last_n = params.penalty_last_n < 0 ? params.n_prev : params.penalty_last_n; const float penalty_repeat = params.penalty_repeat; const float penalty_freq = params.penalty_freq; const float penalty_present = params.penalty_present; const bool penalize_nl = params.penalize_nl; auto & prev = ctx_sampling->prev; auto & cur = ctx_sampling->cur; // Get a pointer to the logits float * logits = llama_get_logits_ith(ctx_main, idx); if (apply_grammar && original_logits != NULL) { // Only make a copy of the original logits if we are not applying grammar checks, not sure if I actually have to do this. *original_logits = {logits, logits + llama_n_vocab(llama_get_model(ctx_main))}; } // apply params.logit_bias map for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) { logits[it->first] += it->second; } if (ctx_cfg) { float * logits_guidance = llama_get_logits_ith(ctx_cfg, idx); llama_sample_apply_guidance(ctx_main, logits, logits_guidance, params.cfg_scale); } cur.clear(); for (llama_token token_id = 0; token_id < n_vocab; token_id++) { cur.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); } llama_token_data_array cur_p = { cur.data(), cur.size(), false }; // apply penalties const auto& penalty_tokens = params.use_penalty_prompt_tokens ? params.penalty_prompt_tokens : prev; const int penalty_tokens_used_size = std::min((int)penalty_tokens.size(), penalty_last_n); if (penalty_tokens_used_size) { const float nl_logit = logits[llama_token_nl(llama_get_model(ctx_main))]; llama_sample_repetition_penalties(ctx_main, &cur_p, penalty_tokens.data() + penalty_tokens.size() - penalty_tokens_used_size, penalty_tokens_used_size, penalty_repeat, penalty_freq, penalty_present); if (!penalize_nl) { for (size_t idx = 0; idx < cur_p.size; idx++) { if (cur_p.data[idx].id == llama_token_nl(llama_get_model(ctx_main))) { cur_p.data[idx].logit = nl_logit; break; } } } } // apply grammar checks before sampling logic if (apply_grammar && ctx_sampling->grammar != NULL) { llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar); } return cur_p; } llama_token llama_sampling_sample( struct llama_sampling_context * ctx_sampling, struct llama_context * ctx_main, struct llama_context * ctx_cfg, const int idx) { // Call the implementation function with is_resampling set to false by default return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, false); } llama_token_data_array llama_sampling_prepare( struct llama_sampling_context * ctx_sampling, struct llama_context * ctx_main, struct llama_context * ctx_cfg, const int idx, bool apply_grammar, std::vector * original_logits) { return llama_sampling_prepare_impl(ctx_sampling,ctx_main, ctx_cfg, idx, apply_grammar, original_logits); } void llama_sampling_accept( struct llama_sampling_context * ctx_sampling, struct llama_context * ctx_main, llama_token id, bool apply_grammar) { ctx_sampling->prev.erase(ctx_sampling->prev.begin()); ctx_sampling->prev.push_back(id); if (ctx_sampling->grammar != NULL && apply_grammar) { llama_grammar_accept_token(ctx_main, ctx_sampling->grammar, id); } }