/* ---------------------------------------------------------------------------- Copyright (c) 2018-2022, Microsoft Research, Daan Leijen This is free software; you can redistribute it and/or modify it under the terms of the MIT license. A copy of the license can be found in the file "LICENSE" at the root of this distribution. -----------------------------------------------------------------------------*/ #ifndef _DEFAULT_SOURCE #define _DEFAULT_SOURCE // for realpath() on Linux #endif #include "mimalloc.h" #include "mimalloc/internal.h" #include "mimalloc/atomic.h" #include "mimalloc/prim.h" // _mi_prim_thread_id() #include // memset, strlen (for mi_strdup) #include // malloc, abort // ------------------------------------------------------ // Allocation // ------------------------------------------------------ // Fast allocation in a page: just pop from the free list. // Fall back to generic allocation only if the list is empty. extern inline void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t size, bool zero) mi_attr_noexcept { mi_assert_internal(page->xblock_size==0||mi_page_block_size(page) >= size); mi_block_t* const block = page->free; if mi_unlikely(block == NULL) { return _mi_malloc_generic(heap, size, zero, 0); } mi_assert_internal(block != NULL && _mi_ptr_page(block) == page); // pop from the free list page->used++; page->free = mi_block_next(page, block); mi_assert_internal(page->free == NULL || _mi_ptr_page(page->free) == page); #if MI_DEBUG>3 if (page->free_is_zero) { mi_assert_expensive(mi_mem_is_zero(block+1,size - sizeof(*block))); } #endif // allow use of the block internally // note: when tracking we need to avoid ever touching the MI_PADDING since // that is tracked by valgrind etc. as non-accessible (through the red-zone, see `mimalloc/track.h`) mi_track_mem_undefined(block, mi_page_usable_block_size(page)); // zero the block? note: we need to zero the full block size (issue #63) if mi_unlikely(zero) { mi_assert_internal(page->xblock_size != 0); // do not call with zero'ing for huge blocks (see _mi_malloc_generic) mi_assert_internal(page->xblock_size >= MI_PADDING_SIZE); if (page->free_is_zero) { block->next = 0; mi_track_mem_defined(block, page->xblock_size - MI_PADDING_SIZE); } else { _mi_memzero_aligned(block, page->xblock_size - MI_PADDING_SIZE); } } #if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN if (!zero && !mi_page_is_huge(page)) { memset(block, MI_DEBUG_UNINIT, mi_page_usable_block_size(page)); } #elif (MI_SECURE!=0) if (!zero) { block->next = 0; } // don't leak internal data #endif #if (MI_STAT>0) const size_t bsize = mi_page_usable_block_size(page); if (bsize <= MI_MEDIUM_OBJ_SIZE_MAX) { mi_heap_stat_increase(heap, normal, bsize); mi_heap_stat_counter_increase(heap, normal_count, 1); #if (MI_STAT>1) const size_t bin = _mi_bin(bsize); mi_heap_stat_increase(heap, normal_bins[bin], 1); #endif } #endif #if MI_PADDING // && !MI_TRACK_ENABLED mi_padding_t* const padding = (mi_padding_t*)((uint8_t*)block + mi_page_usable_block_size(page)); ptrdiff_t delta = ((uint8_t*)padding - (uint8_t*)block - (size - MI_PADDING_SIZE)); #if (MI_DEBUG>=2) mi_assert_internal(delta >= 0 && mi_page_usable_block_size(page) >= (size - MI_PADDING_SIZE + delta)); #endif mi_track_mem_defined(padding,sizeof(mi_padding_t)); // note: re-enable since mi_page_usable_block_size may set noaccess padding->canary = (uint32_t)(mi_ptr_encode(page,block,page->keys)); padding->delta = (uint32_t)(delta); #if MI_PADDING_CHECK if (!mi_page_is_huge(page)) { uint8_t* fill = (uint8_t*)padding - delta; const size_t maxpad = (delta > MI_MAX_ALIGN_SIZE ? MI_MAX_ALIGN_SIZE : delta); // set at most N initial padding bytes for (size_t i = 0; i < maxpad; i++) { fill[i] = MI_DEBUG_PADDING; } } #endif #endif return block; } static inline mi_decl_restrict void* mi_heap_malloc_small_zero(mi_heap_t* heap, size_t size, bool zero) mi_attr_noexcept { mi_assert(heap != NULL); #if MI_DEBUG const uintptr_t tid = _mi_thread_id(); mi_assert(heap->thread_id == 0 || heap->thread_id == tid); // heaps are thread local #endif mi_assert(size <= MI_SMALL_SIZE_MAX); #if (MI_PADDING) if (size == 0) { size = sizeof(void*); } #endif mi_page_t* page = _mi_heap_get_free_small_page(heap, size + MI_PADDING_SIZE); void* const p = _mi_page_malloc(heap, page, size + MI_PADDING_SIZE, zero); mi_track_malloc(p,size,zero); #if MI_STAT>1 if (p != NULL) { if (!mi_heap_is_initialized(heap)) { heap = mi_prim_get_default_heap(); } mi_heap_stat_increase(heap, malloc, mi_usable_size(p)); } #endif #if MI_DEBUG>3 if (p != NULL && zero) { mi_assert_expensive(mi_mem_is_zero(p, size)); } #endif return p; } // allocate a small block mi_decl_nodiscard extern inline mi_decl_restrict void* mi_heap_malloc_small(mi_heap_t* heap, size_t size) mi_attr_noexcept { return mi_heap_malloc_small_zero(heap, size, false); } mi_decl_nodiscard extern inline mi_decl_restrict void* mi_malloc_small(size_t size) mi_attr_noexcept { return mi_heap_malloc_small(mi_prim_get_default_heap(), size); } // The main allocation function extern inline void* _mi_heap_malloc_zero_ex(mi_heap_t* heap, size_t size, bool zero, size_t huge_alignment) mi_attr_noexcept { if mi_likely(size <= MI_SMALL_SIZE_MAX) { mi_assert_internal(huge_alignment == 0); return mi_heap_malloc_small_zero(heap, size, zero); } else { mi_assert(heap!=NULL); mi_assert(heap->thread_id == 0 || heap->thread_id == _mi_thread_id()); // heaps are thread local void* const p = _mi_malloc_generic(heap, size + MI_PADDING_SIZE, zero, huge_alignment); // note: size can overflow but it is detected in malloc_generic mi_track_malloc(p,size,zero); #if MI_STAT>1 if (p != NULL) { if (!mi_heap_is_initialized(heap)) { heap = mi_prim_get_default_heap(); } mi_heap_stat_increase(heap, malloc, mi_usable_size(p)); } #endif #if MI_DEBUG>3 if (p != NULL && zero) { mi_assert_expensive(mi_mem_is_zero(p, size)); } #endif return p; } } extern inline void* _mi_heap_malloc_zero(mi_heap_t* heap, size_t size, bool zero) mi_attr_noexcept { return _mi_heap_malloc_zero_ex(heap, size, zero, 0); } mi_decl_nodiscard extern inline mi_decl_restrict void* mi_heap_malloc(mi_heap_t* heap, size_t size) mi_attr_noexcept { return _mi_heap_malloc_zero(heap, size, false); } mi_decl_nodiscard extern inline mi_decl_restrict void* mi_malloc(size_t size) mi_attr_noexcept { return mi_heap_malloc(mi_prim_get_default_heap(), size); } // zero initialized small block mi_decl_nodiscard mi_decl_restrict void* mi_zalloc_small(size_t size) mi_attr_noexcept { return mi_heap_malloc_small_zero(mi_prim_get_default_heap(), size, true); } mi_decl_nodiscard extern inline mi_decl_restrict void* mi_heap_zalloc(mi_heap_t* heap, size_t size) mi_attr_noexcept { return _mi_heap_malloc_zero(heap, size, true); } mi_decl_nodiscard mi_decl_restrict void* mi_zalloc(size_t size) mi_attr_noexcept { return mi_heap_zalloc(mi_prim_get_default_heap(),size); } // ------------------------------------------------------ // Check for double free in secure and debug mode // This is somewhat expensive so only enabled for secure mode 4 // ------------------------------------------------------ #if (MI_ENCODE_FREELIST && (MI_SECURE>=4 || MI_DEBUG!=0)) // linear check if the free list contains a specific element static bool mi_list_contains(const mi_page_t* page, const mi_block_t* list, const mi_block_t* elem) { while (list != NULL) { if (elem==list) return true; list = mi_block_next(page, list); } return false; } static mi_decl_noinline bool mi_check_is_double_freex(const mi_page_t* page, const mi_block_t* block) { // The decoded value is in the same page (or NULL). // Walk the free lists to verify positively if it is already freed if (mi_list_contains(page, page->free, block) || mi_list_contains(page, page->local_free, block) || mi_list_contains(page, mi_page_thread_free(page), block)) { _mi_error_message(EAGAIN, "double free detected of block %p with size %zu\n", block, mi_page_block_size(page)); return true; } return false; } #define mi_track_page(page,access) { size_t psize; void* pstart = _mi_page_start(_mi_page_segment(page),page,&psize); mi_track_mem_##access( pstart, psize); } static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block) { bool is_double_free = false; mi_block_t* n = mi_block_nextx(page, block, page->keys); // pretend it is freed, and get the decoded first field if (((uintptr_t)n & (MI_INTPTR_SIZE-1))==0 && // quick check: aligned pointer? (n==NULL || mi_is_in_same_page(block, n))) // quick check: in same page or NULL? { // Suspicous: decoded value a in block is in the same page (or NULL) -- maybe a double free? // (continue in separate function to improve code generation) is_double_free = mi_check_is_double_freex(page, block); } return is_double_free; } #else static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block) { MI_UNUSED(page); MI_UNUSED(block); return false; } #endif // --------------------------------------------------------------------------- // Check for heap block overflow by setting up padding at the end of the block // --------------------------------------------------------------------------- #if MI_PADDING // && !MI_TRACK_ENABLED static bool mi_page_decode_padding(const mi_page_t* page, const mi_block_t* block, size_t* delta, size_t* bsize) { *bsize = mi_page_usable_block_size(page); const mi_padding_t* const padding = (mi_padding_t*)((uint8_t*)block + *bsize); mi_track_mem_defined(padding,sizeof(mi_padding_t)); *delta = padding->delta; uint32_t canary = padding->canary; uintptr_t keys[2]; keys[0] = page->keys[0]; keys[1] = page->keys[1]; bool ok = ((uint32_t)mi_ptr_encode(page,block,keys) == canary && *delta <= *bsize); mi_track_mem_noaccess(padding,sizeof(mi_padding_t)); return ok; } // Return the exact usable size of a block. static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block) { size_t bsize; size_t delta; bool ok = mi_page_decode_padding(page, block, &delta, &bsize); mi_assert_internal(ok); mi_assert_internal(delta <= bsize); return (ok ? bsize - delta : 0); } // When a non-thread-local block is freed, it becomes part of the thread delayed free // list that is freed later by the owning heap. If the exact usable size is too small to // contain the pointer for the delayed list, then shrink the padding (by decreasing delta) // so it will later not trigger an overflow error in `mi_free_block`. void _mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size) { size_t bsize; size_t delta; bool ok = mi_page_decode_padding(page, block, &delta, &bsize); mi_assert_internal(ok); if (!ok || (bsize - delta) >= min_size) return; // usually already enough space mi_assert_internal(bsize >= min_size); if (bsize < min_size) return; // should never happen size_t new_delta = (bsize - min_size); mi_assert_internal(new_delta < bsize); mi_padding_t* padding = (mi_padding_t*)((uint8_t*)block + bsize); mi_track_mem_defined(padding,sizeof(mi_padding_t)); padding->delta = (uint32_t)new_delta; mi_track_mem_noaccess(padding,sizeof(mi_padding_t)); } #else static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block) { MI_UNUSED(block); return mi_page_usable_block_size(page); } void _mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size) { MI_UNUSED(page); MI_UNUSED(block); MI_UNUSED(min_size); } #endif #if MI_PADDING && MI_PADDING_CHECK static bool mi_verify_padding(const mi_page_t* page, const mi_block_t* block, size_t* size, size_t* wrong) { size_t bsize; size_t delta; bool ok = mi_page_decode_padding(page, block, &delta, &bsize); *size = *wrong = bsize; if (!ok) return false; mi_assert_internal(bsize >= delta); *size = bsize - delta; if (!mi_page_is_huge(page)) { uint8_t* fill = (uint8_t*)block + bsize - delta; const size_t maxpad = (delta > MI_MAX_ALIGN_SIZE ? MI_MAX_ALIGN_SIZE : delta); // check at most the first N padding bytes mi_track_mem_defined(fill, maxpad); for (size_t i = 0; i < maxpad; i++) { if (fill[i] != MI_DEBUG_PADDING) { *wrong = bsize - delta + i; ok = false; break; } } mi_track_mem_noaccess(fill, maxpad); } return ok; } static void mi_check_padding(const mi_page_t* page, const mi_block_t* block) { size_t size; size_t wrong; if (!mi_verify_padding(page,block,&size,&wrong)) { _mi_error_message(EFAULT, "buffer overflow in heap block %p of size %zu: write after %zu bytes\n", block, size, wrong ); } } #else static void mi_check_padding(const mi_page_t* page, const mi_block_t* block) { MI_UNUSED(page); MI_UNUSED(block); } #endif // only maintain stats for smaller objects if requested #if (MI_STAT>0) static void mi_stat_free(const mi_page_t* page, const mi_block_t* block) { #if (MI_STAT < 2) MI_UNUSED(block); #endif mi_heap_t* const heap = mi_heap_get_default(); const size_t bsize = mi_page_usable_block_size(page); #if (MI_STAT>1) const size_t usize = mi_page_usable_size_of(page, block); mi_heap_stat_decrease(heap, malloc, usize); #endif if (bsize <= MI_MEDIUM_OBJ_SIZE_MAX) { mi_heap_stat_decrease(heap, normal, bsize); #if (MI_STAT > 1) mi_heap_stat_decrease(heap, normal_bins[_mi_bin(bsize)], 1); #endif } else if (bsize <= MI_LARGE_OBJ_SIZE_MAX) { mi_heap_stat_decrease(heap, large, bsize); } else { mi_heap_stat_decrease(heap, huge, bsize); } } #else static void mi_stat_free(const mi_page_t* page, const mi_block_t* block) { MI_UNUSED(page); MI_UNUSED(block); } #endif #if MI_HUGE_PAGE_ABANDON #if (MI_STAT>0) // maintain stats for huge objects static void mi_stat_huge_free(const mi_page_t* page) { mi_heap_t* const heap = mi_heap_get_default(); const size_t bsize = mi_page_block_size(page); // to match stats in `page.c:mi_page_huge_alloc` if (bsize <= MI_LARGE_OBJ_SIZE_MAX) { mi_heap_stat_decrease(heap, large, bsize); } else { mi_heap_stat_decrease(heap, huge, bsize); } } #else static void mi_stat_huge_free(const mi_page_t* page) { MI_UNUSED(page); } #endif #endif // ------------------------------------------------------ // Free // ------------------------------------------------------ // multi-threaded free (or free in huge block if compiled with MI_HUGE_PAGE_ABANDON) static mi_decl_noinline void _mi_free_block_mt(mi_page_t* page, mi_block_t* block) { // The padding check may access the non-thread-owned page for the key values. // that is safe as these are constant and the page won't be freed (as the block is not freed yet). mi_check_padding(page, block); _mi_padding_shrink(page, block, sizeof(mi_block_t)); // for small size, ensure we can fit the delayed thread pointers without triggering overflow detection // huge page segments are always abandoned and can be freed immediately mi_segment_t* segment = _mi_page_segment(page); if (segment->kind == MI_SEGMENT_HUGE) { #if MI_HUGE_PAGE_ABANDON // huge page segments are always abandoned and can be freed immediately mi_stat_huge_free(page); _mi_segment_huge_page_free(segment, page, block); return; #else // huge pages are special as they occupy the entire segment // as these are large we reset the memory occupied by the page so it is available to other threads // (as the owning thread needs to actually free the memory later). _mi_segment_huge_page_reset(segment, page, block); #endif } #if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN // note: when tracking, cannot use mi_usable_size with multi-threading if (segment->kind != MI_SEGMENT_HUGE) { // not for huge segments as we just reset the content memset(block, MI_DEBUG_FREED, mi_usable_size(block)); } #endif // Try to put the block on either the page-local thread free list, or the heap delayed free list. mi_thread_free_t tfreex; bool use_delayed; mi_thread_free_t tfree = mi_atomic_load_relaxed(&page->xthread_free); do { use_delayed = (mi_tf_delayed(tfree) == MI_USE_DELAYED_FREE); if mi_unlikely(use_delayed) { // unlikely: this only happens on the first concurrent free in a page that is in the full list tfreex = mi_tf_set_delayed(tfree,MI_DELAYED_FREEING); } else { // usual: directly add to page thread_free list mi_block_set_next(page, block, mi_tf_block(tfree)); tfreex = mi_tf_set_block(tfree,block); } } while (!mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex)); if mi_unlikely(use_delayed) { // racy read on `heap`, but ok because MI_DELAYED_FREEING is set (see `mi_heap_delete` and `mi_heap_collect_abandon`) mi_heap_t* const heap = (mi_heap_t*)(mi_atomic_load_acquire(&page->xheap)); //mi_page_heap(page); mi_assert_internal(heap != NULL); if (heap != NULL) { // add to the delayed free list of this heap. (do this atomically as the lock only protects heap memory validity) mi_block_t* dfree = mi_atomic_load_ptr_relaxed(mi_block_t, &heap->thread_delayed_free); do { mi_block_set_nextx(heap,block,dfree, heap->keys); } while (!mi_atomic_cas_ptr_weak_release(mi_block_t,&heap->thread_delayed_free, &dfree, block)); } // and reset the MI_DELAYED_FREEING flag tfree = mi_atomic_load_relaxed(&page->xthread_free); do { tfreex = tfree; mi_assert_internal(mi_tf_delayed(tfree) == MI_DELAYED_FREEING); tfreex = mi_tf_set_delayed(tfree,MI_NO_DELAYED_FREE); } while (!mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex)); } } // regular free static inline void _mi_free_block(mi_page_t* page, bool local, mi_block_t* block) { // and push it on the free list //const size_t bsize = mi_page_block_size(page); if mi_likely(local) { // owning thread can free a block directly if mi_unlikely(mi_check_is_double_free(page, block)) return; mi_check_padding(page, block); #if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN if (!mi_page_is_huge(page)) { // huge page content may be already decommitted memset(block, MI_DEBUG_FREED, mi_page_block_size(page)); } #endif mi_block_set_next(page, block, page->local_free); page->local_free = block; page->used--; if mi_unlikely(mi_page_all_free(page)) { _mi_page_retire(page); } else if mi_unlikely(mi_page_is_in_full(page)) { _mi_page_unfull(page); } } else { _mi_free_block_mt(page,block); } } // Adjust a block that was allocated aligned, to the actual start of the block in the page. mi_block_t* _mi_page_ptr_unalign(const mi_segment_t* segment, const mi_page_t* page, const void* p) { mi_assert_internal(page!=NULL && p!=NULL); const size_t diff = (uint8_t*)p - _mi_page_start(segment, page, NULL); const size_t adjust = (diff % mi_page_block_size(page)); return (mi_block_t*)((uintptr_t)p - adjust); } void mi_decl_noinline _mi_free_generic(const mi_segment_t* segment, mi_page_t* page, bool is_local, void* p) mi_attr_noexcept { mi_block_t* const block = (mi_page_has_aligned(page) ? _mi_page_ptr_unalign(segment, page, p) : (mi_block_t*)p); mi_stat_free(page, block); // stat_free may access the padding mi_track_free_size(block, mi_page_usable_size_of(page,block)); _mi_free_block(page, is_local, block); } // Get the segment data belonging to a pointer // This is just a single `and` in assembly but does further checks in debug mode // (and secure mode) if this was a valid pointer. static inline mi_segment_t* mi_checked_ptr_segment(const void* p, const char* msg) { MI_UNUSED(msg); mi_assert(p != NULL); #if (MI_DEBUG>0) if mi_unlikely(((uintptr_t)p & (MI_INTPTR_SIZE - 1)) != 0) { _mi_error_message(EINVAL, "%s: invalid (unaligned) pointer: %p\n", msg, p); return NULL; } #endif mi_segment_t* const segment = _mi_ptr_segment(p); mi_assert_internal(segment != NULL); #if (MI_DEBUG>0) if mi_unlikely(!mi_is_in_heap_region(p)) { #if (MI_INTPTR_SIZE == 8 && defined(__linux__)) if (((uintptr_t)p >> 40) != 0x7F) { // linux tends to align large blocks above 0x7F000000000 (issue #640) #else { #endif _mi_warning_message("%s: pointer might not point to a valid heap region: %p\n" "(this may still be a valid very large allocation (over 64MiB))\n", msg, p); if mi_likely(_mi_ptr_cookie(segment) == segment->cookie) { _mi_warning_message("(yes, the previous pointer %p was valid after all)\n", p); } } } #endif #if (MI_DEBUG>0 || MI_SECURE>=4) if mi_unlikely(_mi_ptr_cookie(segment) != segment->cookie) { _mi_error_message(EINVAL, "%s: pointer does not point to a valid heap space: %p\n", msg, p); return NULL; } #endif return segment; } // Free a block // fast path written carefully to prevent spilling on the stack void mi_free(void* p) mi_attr_noexcept { if mi_unlikely(p == NULL) return; mi_segment_t* const segment = mi_checked_ptr_segment(p,"mi_free"); const bool is_local= (_mi_prim_thread_id() == mi_atomic_load_relaxed(&segment->thread_id)); mi_page_t* const page = _mi_segment_page_of(segment, p); if mi_likely(is_local) { // thread-local free? if mi_likely(page->flags.full_aligned == 0) // and it is not a full page (full pages need to move from the full bin), nor has aligned blocks (aligned blocks need to be unaligned) { mi_block_t* const block = (mi_block_t*)p; if mi_unlikely(mi_check_is_double_free(page, block)) return; mi_check_padding(page, block); mi_stat_free(page, block); #if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN memset(block, MI_DEBUG_FREED, mi_page_block_size(page)); #endif mi_track_free_size(p, mi_page_usable_size_of(page,block)); // faster then mi_usable_size as we already know the page and that p is unaligned mi_block_set_next(page, block, page->local_free); page->local_free = block; if mi_unlikely(--page->used == 0) { // using this expression generates better code than: page->used--; if (mi_page_all_free(page)) _mi_page_retire(page); } } else { // page is full or contains (inner) aligned blocks; use generic path _mi_free_generic(segment, page, true, p); } } else { // not thread-local; use generic path _mi_free_generic(segment, page, false, p); } } // return true if successful bool _mi_free_delayed_block(mi_block_t* block) { // get segment and page const mi_segment_t* const segment = _mi_ptr_segment(block); mi_assert_internal(_mi_ptr_cookie(segment) == segment->cookie); mi_assert_internal(_mi_thread_id() == segment->thread_id); mi_page_t* const page = _mi_segment_page_of(segment, block); // Clear the no-delayed flag so delayed freeing is used again for this page. // This must be done before collecting the free lists on this page -- otherwise // some blocks may end up in the page `thread_free` list with no blocks in the // heap `thread_delayed_free` list which may cause the page to be never freed! // (it would only be freed if we happen to scan it in `mi_page_queue_find_free_ex`) if (!_mi_page_try_use_delayed_free(page, MI_USE_DELAYED_FREE, false /* dont overwrite never delayed */)) { return false; } // collect all other non-local frees to ensure up-to-date `used` count _mi_page_free_collect(page, false); // and free the block (possibly freeing the page as well since used is updated) _mi_free_block(page, true, block); return true; } // Bytes available in a block mi_decl_noinline static size_t mi_page_usable_aligned_size_of(const mi_segment_t* segment, const mi_page_t* page, const void* p) mi_attr_noexcept { const mi_block_t* block = _mi_page_ptr_unalign(segment, page, p); const size_t size = mi_page_usable_size_of(page, block); const ptrdiff_t adjust = (uint8_t*)p - (uint8_t*)block; mi_assert_internal(adjust >= 0 && (size_t)adjust <= size); return (size - adjust); } static inline size_t _mi_usable_size(const void* p, const char* msg) mi_attr_noexcept { if (p == NULL) return 0; const mi_segment_t* const segment = mi_checked_ptr_segment(p, msg); const mi_page_t* const page = _mi_segment_page_of(segment, p); if mi_likely(!mi_page_has_aligned(page)) { const mi_block_t* block = (const mi_block_t*)p; return mi_page_usable_size_of(page, block); } else { // split out to separate routine for improved code generation return mi_page_usable_aligned_size_of(segment, page, p); } } mi_decl_nodiscard size_t mi_usable_size(const void* p) mi_attr_noexcept { return _mi_usable_size(p, "mi_usable_size"); } // ------------------------------------------------------ // Allocation extensions // ------------------------------------------------------ void mi_free_size(void* p, size_t size) mi_attr_noexcept { MI_UNUSED_RELEASE(size); mi_assert(p == NULL || size <= _mi_usable_size(p,"mi_free_size")); mi_free(p); } void mi_free_size_aligned(void* p, size_t size, size_t alignment) mi_attr_noexcept { MI_UNUSED_RELEASE(alignment); mi_assert(((uintptr_t)p % alignment) == 0); mi_free_size(p,size); } void mi_free_aligned(void* p, size_t alignment) mi_attr_noexcept { MI_UNUSED_RELEASE(alignment); mi_assert(((uintptr_t)p % alignment) == 0); mi_free(p); } mi_decl_nodiscard extern inline mi_decl_restrict void* mi_heap_calloc(mi_heap_t* heap, size_t count, size_t size) mi_attr_noexcept { size_t total; if (mi_count_size_overflow(count,size,&total)) return NULL; return mi_heap_zalloc(heap,total); } mi_decl_nodiscard mi_decl_restrict void* mi_calloc(size_t count, size_t size) mi_attr_noexcept { return mi_heap_calloc(mi_prim_get_default_heap(),count,size); } // Uninitialized `calloc` mi_decl_nodiscard extern mi_decl_restrict void* mi_heap_mallocn(mi_heap_t* heap, size_t count, size_t size) mi_attr_noexcept { size_t total; if (mi_count_size_overflow(count, size, &total)) return NULL; return mi_heap_malloc(heap, total); } mi_decl_nodiscard mi_decl_restrict void* mi_mallocn(size_t count, size_t size) mi_attr_noexcept { return mi_heap_mallocn(mi_prim_get_default_heap(),count,size); } // Expand (or shrink) in place (or fail) void* mi_expand(void* p, size_t newsize) mi_attr_noexcept { #if MI_PADDING // we do not shrink/expand with padding enabled MI_UNUSED(p); MI_UNUSED(newsize); return NULL; #else if (p == NULL) return NULL; const size_t size = _mi_usable_size(p,"mi_expand"); if (newsize > size) return NULL; return p; // it fits #endif } void* _mi_heap_realloc_zero(mi_heap_t* heap, void* p, size_t newsize, bool zero) mi_attr_noexcept { // if p == NULL then behave as malloc. // else if size == 0 then reallocate to a zero-sized block (and don't return NULL, just as mi_malloc(0)). // (this means that returning NULL always indicates an error, and `p` will not have been freed in that case.) const size_t size = _mi_usable_size(p,"mi_realloc"); // also works if p == NULL (with size 0) if mi_unlikely(newsize <= size && newsize >= (size / 2) && newsize > 0) { // note: newsize must be > 0 or otherwise we return NULL for realloc(NULL,0) mi_assert_internal(p!=NULL); // todo: do not track as the usable size is still the same in the free; adjust potential padding? // mi_track_resize(p,size,newsize) // if (newsize < size) { mi_track_mem_noaccess((uint8_t*)p + newsize, size - newsize); } return p; // reallocation still fits and not more than 50% waste } void* newp = mi_heap_malloc(heap,newsize); if mi_likely(newp != NULL) { if (zero && newsize > size) { // also set last word in the previous allocation to zero to ensure any padding is zero-initialized const size_t start = (size >= sizeof(intptr_t) ? size - sizeof(intptr_t) : 0); _mi_memzero((uint8_t*)newp + start, newsize - start); } else if (newsize == 0) { ((uint8_t*)newp)[0] = 0; // work around for applications that expect zero-reallocation to be zero initialized (issue #725) } if mi_likely(p != NULL) { const size_t copysize = (newsize > size ? size : newsize); mi_track_mem_defined(p,copysize); // _mi_useable_size may be too large for byte precise memory tracking.. _mi_memcpy(newp, p, copysize); mi_free(p); // only free the original pointer if successful } } return newp; } mi_decl_nodiscard void* mi_heap_realloc(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept { return _mi_heap_realloc_zero(heap, p, newsize, false); } mi_decl_nodiscard void* mi_heap_reallocn(mi_heap_t* heap, void* p, size_t count, size_t size) mi_attr_noexcept { size_t total; if (mi_count_size_overflow(count, size, &total)) return NULL; return mi_heap_realloc(heap, p, total); } // Reallocate but free `p` on errors mi_decl_nodiscard void* mi_heap_reallocf(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept { void* newp = mi_heap_realloc(heap, p, newsize); if (newp==NULL && p!=NULL) mi_free(p); return newp; } mi_decl_nodiscard void* mi_heap_rezalloc(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept { return _mi_heap_realloc_zero(heap, p, newsize, true); } mi_decl_nodiscard void* mi_heap_recalloc(mi_heap_t* heap, void* p, size_t count, size_t size) mi_attr_noexcept { size_t total; if (mi_count_size_overflow(count, size, &total)) return NULL; return mi_heap_rezalloc(heap, p, total); } mi_decl_nodiscard void* mi_realloc(void* p, size_t newsize) mi_attr_noexcept { return mi_heap_realloc(mi_prim_get_default_heap(),p,newsize); } mi_decl_nodiscard void* mi_reallocn(void* p, size_t count, size_t size) mi_attr_noexcept { return mi_heap_reallocn(mi_prim_get_default_heap(),p,count,size); } // Reallocate but free `p` on errors mi_decl_nodiscard void* mi_reallocf(void* p, size_t newsize) mi_attr_noexcept { return mi_heap_reallocf(mi_prim_get_default_heap(),p,newsize); } mi_decl_nodiscard void* mi_rezalloc(void* p, size_t newsize) mi_attr_noexcept { return mi_heap_rezalloc(mi_prim_get_default_heap(), p, newsize); } mi_decl_nodiscard void* mi_recalloc(void* p, size_t count, size_t size) mi_attr_noexcept { return mi_heap_recalloc(mi_prim_get_default_heap(), p, count, size); } // ------------------------------------------------------ // strdup, strndup, and realpath // ------------------------------------------------------ // `strdup` using mi_malloc mi_decl_nodiscard mi_decl_restrict char* mi_heap_strdup(mi_heap_t* heap, const char* s) mi_attr_noexcept { if (s == NULL) return NULL; size_t n = strlen(s); char* t = (char*)mi_heap_malloc(heap,n+1); if (t == NULL) return NULL; _mi_memcpy(t, s, n); t[n] = 0; return t; } mi_decl_nodiscard mi_decl_restrict char* mi_strdup(const char* s) mi_attr_noexcept { return mi_heap_strdup(mi_prim_get_default_heap(), s); } // `strndup` using mi_malloc mi_decl_nodiscard mi_decl_restrict char* mi_heap_strndup(mi_heap_t* heap, const char* s, size_t n) mi_attr_noexcept { if (s == NULL) return NULL; const char* end = (const char*)memchr(s, 0, n); // find end of string in the first `n` characters (returns NULL if not found) const size_t m = (end != NULL ? (size_t)(end - s) : n); // `m` is the minimum of `n` or the end-of-string mi_assert_internal(m <= n); char* t = (char*)mi_heap_malloc(heap, m+1); if (t == NULL) return NULL; _mi_memcpy(t, s, m); t[m] = 0; return t; } mi_decl_nodiscard mi_decl_restrict char* mi_strndup(const char* s, size_t n) mi_attr_noexcept { return mi_heap_strndup(mi_prim_get_default_heap(),s,n); } #ifndef __wasi__ // `realpath` using mi_malloc #ifdef _WIN32 #ifndef PATH_MAX #define PATH_MAX MAX_PATH #endif #include mi_decl_nodiscard mi_decl_restrict char* mi_heap_realpath(mi_heap_t* heap, const char* fname, char* resolved_name) mi_attr_noexcept { // todo: use GetFullPathNameW to allow longer file names char buf[PATH_MAX]; DWORD res = GetFullPathNameA(fname, PATH_MAX, (resolved_name == NULL ? buf : resolved_name), NULL); if (res == 0) { errno = GetLastError(); return NULL; } else if (res > PATH_MAX) { errno = EINVAL; return NULL; } else if (resolved_name != NULL) { return resolved_name; } else { return mi_heap_strndup(heap, buf, PATH_MAX); } } #else /* #include // pathconf static size_t mi_path_max(void) { static size_t path_max = 0; if (path_max <= 0) { long m = pathconf("/",_PC_PATH_MAX); if (m <= 0) path_max = 4096; // guess else if (m < 256) path_max = 256; // at least 256 else path_max = m; } return path_max; } */ char* mi_heap_realpath(mi_heap_t* heap, const char* fname, char* resolved_name) mi_attr_noexcept { if (resolved_name != NULL) { return realpath(fname,resolved_name); } else { char* rname = realpath(fname, NULL); if (rname == NULL) return NULL; char* result = mi_heap_strdup(heap, rname); free(rname); // use regular free! (which may be redirected to our free but that's ok) return result; } /* const size_t n = mi_path_max(); char* buf = (char*)mi_malloc(n+1); if (buf == NULL) { errno = ENOMEM; return NULL; } char* rname = realpath(fname,buf); char* result = mi_heap_strndup(heap,rname,n); // ok if `rname==NULL` mi_free(buf); return result; } */ } #endif mi_decl_nodiscard mi_decl_restrict char* mi_realpath(const char* fname, char* resolved_name) mi_attr_noexcept { return mi_heap_realpath(mi_prim_get_default_heap(),fname,resolved_name); } #endif /*------------------------------------------------------- C++ new and new_aligned The standard requires calling into `get_new_handler` and throwing the bad_alloc exception on failure. If we compile with a C++ compiler we can implement this precisely. If we use a C compiler we cannot throw a `bad_alloc` exception but we call `exit` instead (i.e. not returning). -------------------------------------------------------*/ #ifdef __cplusplus #include static bool mi_try_new_handler(bool nothrow) { #if defined(_MSC_VER) || (__cplusplus >= 201103L) std::new_handler h = std::get_new_handler(); #else std::new_handler h = std::set_new_handler(); std::set_new_handler(h); #endif if (h==NULL) { _mi_error_message(ENOMEM, "out of memory in 'new'"); if (!nothrow) { throw std::bad_alloc(); } return false; } else { h(); return true; } } #else typedef void (*std_new_handler_t)(void); #if (defined(__GNUC__) || (defined(__clang__) && !defined(_MSC_VER))) // exclude clang-cl, see issue #631 std_new_handler_t __attribute__((weak)) _ZSt15get_new_handlerv(void) { return NULL; } static std_new_handler_t mi_get_new_handler(void) { return _ZSt15get_new_handlerv(); } #else // note: on windows we could dynamically link to `?get_new_handler@std@@YAP6AXXZXZ`. static std_new_handler_t mi_get_new_handler() { return NULL; } #endif static bool mi_try_new_handler(bool nothrow) { std_new_handler_t h = mi_get_new_handler(); if (h==NULL) { _mi_error_message(ENOMEM, "out of memory in 'new'"); if (!nothrow) { abort(); // cannot throw in plain C, use abort } return false; } else { h(); return true; } } #endif mi_decl_export mi_decl_noinline void* mi_heap_try_new(mi_heap_t* heap, size_t size, bool nothrow ) { void* p = NULL; while(p == NULL && mi_try_new_handler(nothrow)) { p = mi_heap_malloc(heap,size); } return p; } static mi_decl_noinline void* mi_try_new(size_t size, bool nothrow) { return mi_heap_try_new(mi_prim_get_default_heap(), size, nothrow); } mi_decl_nodiscard mi_decl_restrict void* mi_heap_alloc_new(mi_heap_t* heap, size_t size) { void* p = mi_heap_malloc(heap,size); if mi_unlikely(p == NULL) return mi_heap_try_new(heap, size, false); return p; } mi_decl_nodiscard mi_decl_restrict void* mi_new(size_t size) { return mi_heap_alloc_new(mi_prim_get_default_heap(), size); } mi_decl_nodiscard mi_decl_restrict void* mi_heap_alloc_new_n(mi_heap_t* heap, size_t count, size_t size) { size_t total; if mi_unlikely(mi_count_size_overflow(count, size, &total)) { mi_try_new_handler(false); // on overflow we invoke the try_new_handler once to potentially throw std::bad_alloc return NULL; } else { return mi_heap_alloc_new(heap,total); } } mi_decl_nodiscard mi_decl_restrict void* mi_new_n(size_t count, size_t size) { return mi_heap_alloc_new_n(mi_prim_get_default_heap(), size, count); } mi_decl_nodiscard mi_decl_restrict void* mi_new_nothrow(size_t size) mi_attr_noexcept { void* p = mi_malloc(size); if mi_unlikely(p == NULL) return mi_try_new(size, true); return p; } mi_decl_nodiscard mi_decl_restrict void* mi_new_aligned(size_t size, size_t alignment) { void* p; do { p = mi_malloc_aligned(size, alignment); } while(p == NULL && mi_try_new_handler(false)); return p; } mi_decl_nodiscard mi_decl_restrict void* mi_new_aligned_nothrow(size_t size, size_t alignment) mi_attr_noexcept { void* p; do { p = mi_malloc_aligned(size, alignment); } while(p == NULL && mi_try_new_handler(true)); return p; } mi_decl_nodiscard void* mi_new_realloc(void* p, size_t newsize) { void* q; do { q = mi_realloc(p, newsize); } while (q == NULL && mi_try_new_handler(false)); return q; } mi_decl_nodiscard void* mi_new_reallocn(void* p, size_t newcount, size_t size) { size_t total; if mi_unlikely(mi_count_size_overflow(newcount, size, &total)) { mi_try_new_handler(false); // on overflow we invoke the try_new_handler once to potentially throw std::bad_alloc return NULL; } else { return mi_new_realloc(p, total); } } // ------------------------------------------------------ // ensure explicit external inline definitions are emitted! // ------------------------------------------------------ #ifdef __cplusplus void* _mi_externs[] = { (void*)&_mi_page_malloc, (void*)&_mi_heap_malloc_zero, (void*)&_mi_heap_malloc_zero_ex, (void*)&mi_malloc, (void*)&mi_malloc_small, (void*)&mi_zalloc_small, (void*)&mi_heap_malloc, (void*)&mi_heap_zalloc, (void*)&mi_heap_malloc_small, // (void*)&mi_heap_alloc_new, // (void*)&mi_heap_alloc_new_n }; #endif