#include "git-compat-util.h" #include "config.h" #include "entry.h" #include "gettext.h" #include "hash.h" #include "hex.h" #include "parallel-checkout.h" #include "pkt-line.h" #include "progress.h" #include "read-cache-ll.h" #include "run-command.h" #include "sigchain.h" #include "streaming.h" #include "symlinks.h" #include "thread-utils.h" #include "trace2.h" struct pc_worker { struct child_process cp; size_t next_item_to_complete, nr_items_to_complete; }; struct parallel_checkout { enum pc_status status; struct parallel_checkout_item *items; /* The parallel checkout queue. */ size_t nr, alloc; struct progress *progress; unsigned int *progress_cnt; }; static struct parallel_checkout parallel_checkout; enum pc_status parallel_checkout_status(void) { return parallel_checkout.status; } static const int DEFAULT_THRESHOLD_FOR_PARALLELISM = 100; static const int DEFAULT_NUM_WORKERS = 1; void get_parallel_checkout_configs(int *num_workers, int *threshold) { char *env_workers = getenv("GIT_TEST_CHECKOUT_WORKERS"); if (env_workers && *env_workers) { if (strtol_i(env_workers, 10, num_workers)) { die(_("invalid value for '%s': '%s'"), "GIT_TEST_CHECKOUT_WORKERS", env_workers); } if (*num_workers < 1) *num_workers = online_cpus(); *threshold = 0; return; } if (git_config_get_int("checkout.workers", num_workers)) *num_workers = DEFAULT_NUM_WORKERS; else if (*num_workers < 1) *num_workers = online_cpus(); if (git_config_get_int("checkout.thresholdForParallelism", threshold)) *threshold = DEFAULT_THRESHOLD_FOR_PARALLELISM; } void init_parallel_checkout(void) { if (parallel_checkout.status != PC_UNINITIALIZED) BUG("parallel checkout already initialized"); parallel_checkout.status = PC_ACCEPTING_ENTRIES; } static void finish_parallel_checkout(void) { if (parallel_checkout.status == PC_UNINITIALIZED) BUG("cannot finish parallel checkout: not initialized yet"); free(parallel_checkout.items); memset(¶llel_checkout, 0, sizeof(parallel_checkout)); } static int is_eligible_for_parallel_checkout(const struct cache_entry *ce, const struct conv_attrs *ca) { enum conv_attrs_classification c; size_t packed_item_size; /* * Symlinks cannot be checked out in parallel as, in case of path * collision, they could racily replace leading directories of other * entries being checked out. Submodules are checked out in child * processes, which have their own parallel checkout queues. */ if (!S_ISREG(ce->ce_mode)) return 0; packed_item_size = sizeof(struct pc_item_fixed_portion) + ce->ce_namelen + (ca->working_tree_encoding ? strlen(ca->working_tree_encoding) : 0); /* * The amount of data we send to the workers per checkout item is * typically small (75~300B). So unless we find an insanely huge path * of 64KB, we should never reach the 65KB limit of one pkt-line. If * that does happen, we let the sequential code handle the item. */ if (packed_item_size > LARGE_PACKET_DATA_MAX) return 0; c = classify_conv_attrs(ca); switch (c) { case CA_CLASS_INCORE: return 1; case CA_CLASS_INCORE_FILTER: /* * It would be safe to allow concurrent instances of * single-file smudge filters, like rot13, but we should not * assume that all filters are parallel-process safe. So we * don't allow this. */ return 0; case CA_CLASS_INCORE_PROCESS: /* * The parallel queue and the delayed queue are not compatible, * so they must be kept completely separated. And we can't tell * if a long-running process will delay its response without * actually asking it to perform the filtering. Therefore, this * type of filter is not allowed in parallel checkout. * * Furthermore, there should only be one instance of the * long-running process filter as we don't know how it is * managing its own concurrency. So, spreading the entries that * requisite such a filter among the parallel workers would * require a lot more inter-process communication. We would * probably have to designate a single process to interact with * the filter and send all the necessary data to it, for each * entry. */ return 0; case CA_CLASS_STREAMABLE: return 1; default: BUG("unsupported conv_attrs classification '%d'", c); } } int enqueue_checkout(struct cache_entry *ce, struct conv_attrs *ca, int *checkout_counter) { struct parallel_checkout_item *pc_item; if (parallel_checkout.status != PC_ACCEPTING_ENTRIES || !is_eligible_for_parallel_checkout(ce, ca)) return -1; ALLOC_GROW(parallel_checkout.items, parallel_checkout.nr + 1, parallel_checkout.alloc); pc_item = ¶llel_checkout.items[parallel_checkout.nr]; pc_item->ce = ce; memcpy(&pc_item->ca, ca, sizeof(pc_item->ca)); pc_item->status = PC_ITEM_PENDING; pc_item->id = parallel_checkout.nr; pc_item->checkout_counter = checkout_counter; parallel_checkout.nr++; return 0; } size_t pc_queue_size(void) { return parallel_checkout.nr; } static void advance_progress_meter(void) { if (parallel_checkout.progress) { (*parallel_checkout.progress_cnt)++; display_progress(parallel_checkout.progress, *parallel_checkout.progress_cnt); } } static int handle_results(struct checkout *state) { int ret = 0; size_t i; int have_pending = 0; /* * We first update the successfully written entries with the collected * stat() data, so that they can be found by mark_colliding_entries(), * in the next loop, when necessary. */ for (i = 0; i < parallel_checkout.nr; i++) { struct parallel_checkout_item *pc_item = ¶llel_checkout.items[i]; if (pc_item->status == PC_ITEM_WRITTEN) update_ce_after_write(state, pc_item->ce, &pc_item->st); } for (i = 0; i < parallel_checkout.nr; i++) { struct parallel_checkout_item *pc_item = ¶llel_checkout.items[i]; switch(pc_item->status) { case PC_ITEM_WRITTEN: if (pc_item->checkout_counter) (*pc_item->checkout_counter)++; break; case PC_ITEM_COLLIDED: /* * The entry could not be checked out due to a path * collision with another entry. Since there can only * be one entry of each colliding group on the disk, we * could skip trying to check out this one and move on. * However, this would leave the unwritten entries with * null stat() fields on the index, which could * potentially slow down subsequent operations that * require refreshing it: git would not be able to * trust st_size and would have to go to the filesystem * to see if the contents match (see ie_modified()). * * Instead, let's pay the overhead only once, now, and * call checkout_entry_ca() again for this file, to * have its stat() data stored in the index. This also * has the benefit of adding this entry and its * colliding pair to the collision report message. * Additionally, this overwriting behavior is consistent * with what the sequential checkout does, so it doesn't * add any extra overhead. */ ret |= checkout_entry_ca(pc_item->ce, &pc_item->ca, state, NULL, pc_item->checkout_counter); advance_progress_meter(); break; case PC_ITEM_PENDING: have_pending = 1; /* fall through */ case PC_ITEM_FAILED: ret = -1; break; default: BUG("unknown checkout item status in parallel checkout"); } } if (have_pending) error("parallel checkout finished with pending entries"); return ret; } static int reset_fd(int fd, const char *path) { if (lseek(fd, 0, SEEK_SET) != 0) return error_errno("failed to rewind descriptor of '%s'", path); if (ftruncate(fd, 0)) return error_errno("failed to truncate file '%s'", path); return 0; } static int write_pc_item_to_fd(struct parallel_checkout_item *pc_item, int fd, const char *path) { int ret; struct stream_filter *filter; struct strbuf buf = STRBUF_INIT; char *blob; size_t size; ssize_t wrote; /* Sanity check */ assert(is_eligible_for_parallel_checkout(pc_item->ce, &pc_item->ca)); filter = get_stream_filter_ca(&pc_item->ca, &pc_item->ce->oid); if (filter) { if (stream_blob_to_fd(fd, &pc_item->ce->oid, filter, 1)) { /* On error, reset fd to try writing without streaming */ if (reset_fd(fd, path)) return -1; } else { return 0; } } blob = read_blob_entry(pc_item->ce, &size); if (!blob) return error("cannot read object %s '%s'", oid_to_hex(&pc_item->ce->oid), pc_item->ce->name); /* * checkout metadata is used to give context for external process * filters. Files requiring such filters are not eligible for parallel * checkout, so pass NULL. Note: if that changes, the metadata must also * be passed from the main process to the workers. */ ret = convert_to_working_tree_ca(&pc_item->ca, pc_item->ce->name, blob, size, &buf, NULL); if (ret) { size_t newsize; free(blob); blob = strbuf_detach(&buf, &newsize); size = newsize; } wrote = write_in_full(fd, blob, size); free(blob); if (wrote < 0) return error("unable to write file '%s'", path); return 0; } static int close_and_clear(int *fd) { int ret = 0; if (*fd >= 0) { ret = close(*fd); *fd = -1; } return ret; } void write_pc_item(struct parallel_checkout_item *pc_item, struct checkout *state) { unsigned int mode = (pc_item->ce->ce_mode & 0100) ? 0777 : 0666; int fd = -1, fstat_done = 0; struct strbuf path = STRBUF_INIT; const char *dir_sep; strbuf_add(&path, state->base_dir, state->base_dir_len); strbuf_add(&path, pc_item->ce->name, pc_item->ce->ce_namelen); dir_sep = find_last_dir_sep(path.buf); /* * The leading dirs should have been already created by now. But, in * case of path collisions, one of the dirs could have been replaced by * a symlink (checked out after we enqueued this entry for parallel * checkout). Thus, we must check the leading dirs again. */ if (dir_sep && !has_dirs_only_path(path.buf, dir_sep - path.buf, state->base_dir_len)) { pc_item->status = PC_ITEM_COLLIDED; trace2_data_string("pcheckout", NULL, "collision/dirname", path.buf); goto out; } fd = open(path.buf, O_WRONLY | O_CREAT | O_EXCL, mode); if (fd < 0) { if (errno == EEXIST || errno == EISDIR) { /* * Errors which probably represent a path collision. * Suppress the error message and mark the item to be * retried later, sequentially. ENOTDIR and ENOENT are * also interesting, but the above has_dirs_only_path() * call should have already caught these cases. */ pc_item->status = PC_ITEM_COLLIDED; trace2_data_string("pcheckout", NULL, "collision/basename", path.buf); } else { error_errno("failed to open file '%s'", path.buf); pc_item->status = PC_ITEM_FAILED; } goto out; } if (write_pc_item_to_fd(pc_item, fd, path.buf)) { /* Error was already reported. */ pc_item->status = PC_ITEM_FAILED; close_and_clear(&fd); unlink(path.buf); goto out; } fstat_done = fstat_checkout_output(fd, state, &pc_item->st); if (close_and_clear(&fd)) { error_errno("unable to close file '%s'", path.buf); pc_item->status = PC_ITEM_FAILED; goto out; } if (state->refresh_cache && !fstat_done && lstat(path.buf, &pc_item->st) < 0) { error_errno("unable to stat just-written file '%s'", path.buf); pc_item->status = PC_ITEM_FAILED; goto out; } pc_item->status = PC_ITEM_WRITTEN; out: strbuf_release(&path); } static void send_one_item(int fd, struct parallel_checkout_item *pc_item) { size_t len_data; char *data, *variant; struct pc_item_fixed_portion *fixed_portion; const char *working_tree_encoding = pc_item->ca.working_tree_encoding; size_t name_len = pc_item->ce->ce_namelen; size_t working_tree_encoding_len = working_tree_encoding ? strlen(working_tree_encoding) : 0; /* * Any changes in the calculation of the message size must also be made * in is_eligible_for_parallel_checkout(). */ len_data = sizeof(struct pc_item_fixed_portion) + name_len + working_tree_encoding_len; data = xmalloc(len_data); fixed_portion = (struct pc_item_fixed_portion *)data; fixed_portion->id = pc_item->id; fixed_portion->ce_mode = pc_item->ce->ce_mode; fixed_portion->crlf_action = pc_item->ca.crlf_action; fixed_portion->ident = pc_item->ca.ident; fixed_portion->name_len = name_len; fixed_portion->working_tree_encoding_len = working_tree_encoding_len; oidcpy(&fixed_portion->oid, &pc_item->ce->oid); variant = data + sizeof(*fixed_portion); if (working_tree_encoding_len) { memcpy(variant, working_tree_encoding, working_tree_encoding_len); variant += working_tree_encoding_len; } memcpy(variant, pc_item->ce->name, name_len); packet_write(fd, data, len_data); free(data); } static void send_batch(int fd, size_t start, size_t nr) { size_t i; sigchain_push(SIGPIPE, SIG_IGN); for (i = 0; i < nr; i++) send_one_item(fd, ¶llel_checkout.items[start + i]); packet_flush(fd); sigchain_pop(SIGPIPE); } static struct pc_worker *setup_workers(struct checkout *state, int num_workers) { struct pc_worker *workers; int i, workers_with_one_extra_item; size_t base_batch_size, batch_beginning = 0; ALLOC_ARRAY(workers, num_workers); for (i = 0; i < num_workers; i++) { struct child_process *cp = &workers[i].cp; child_process_init(cp); cp->git_cmd = 1; cp->in = -1; cp->out = -1; cp->clean_on_exit = 1; strvec_push(&cp->args, "checkout--worker"); if (state->base_dir_len) strvec_pushf(&cp->args, "--prefix=%s", state->base_dir); if (start_command(cp)) die("failed to spawn checkout worker"); } base_batch_size = parallel_checkout.nr / num_workers; workers_with_one_extra_item = parallel_checkout.nr % num_workers; for (i = 0; i < num_workers; i++) { struct pc_worker *worker = &workers[i]; size_t batch_size = base_batch_size; /* distribute the extra work evenly */ if (i < workers_with_one_extra_item) batch_size++; send_batch(worker->cp.in, batch_beginning, batch_size); worker->next_item_to_complete = batch_beginning; worker->nr_items_to_complete = batch_size; batch_beginning += batch_size; } return workers; } static void finish_workers(struct pc_worker *workers, int num_workers) { int i; /* * Close pipes before calling finish_command() to let the workers * exit asynchronously and avoid spending extra time on wait(). */ for (i = 0; i < num_workers; i++) { struct child_process *cp = &workers[i].cp; if (cp->in >= 0) close(cp->in); if (cp->out >= 0) close(cp->out); } for (i = 0; i < num_workers; i++) { int rc = finish_command(&workers[i].cp); if (rc > 128) { /* * For a normal non-zero exit, the worker should have * already printed something useful to stderr. But a * death by signal should be mentioned to the user. */ error("checkout worker %d died of signal %d", i, rc - 128); } } free(workers); } static inline void assert_pc_item_result_size(int got, int exp) { if (got != exp) BUG("wrong result size from checkout worker (got %dB, exp %dB)", got, exp); } static void parse_and_save_result(const char *buffer, int len, struct pc_worker *worker) { struct pc_item_result *res; struct parallel_checkout_item *pc_item; struct stat *st = NULL; if (len < PC_ITEM_RESULT_BASE_SIZE) BUG("too short result from checkout worker (got %dB, exp >=%dB)", len, (int)PC_ITEM_RESULT_BASE_SIZE); res = (struct pc_item_result *)buffer; /* * Worker should send either the full result struct on success, or * just the base (i.e. no stat data), otherwise. */ if (res->status == PC_ITEM_WRITTEN) { assert_pc_item_result_size(len, (int)sizeof(struct pc_item_result)); st = &res->st; } else { assert_pc_item_result_size(len, (int)PC_ITEM_RESULT_BASE_SIZE); } if (!worker->nr_items_to_complete) BUG("received result from supposedly finished checkout worker"); if (res->id != worker->next_item_to_complete) BUG("unexpected item id from checkout worker (got %"PRIuMAX", exp %"PRIuMAX")", (uintmax_t)res->id, (uintmax_t)worker->next_item_to_complete); worker->next_item_to_complete++; worker->nr_items_to_complete--; pc_item = ¶llel_checkout.items[res->id]; pc_item->status = res->status; if (st) pc_item->st = *st; if (res->status != PC_ITEM_COLLIDED) advance_progress_meter(); } static void gather_results_from_workers(struct pc_worker *workers, int num_workers) { int i, active_workers = num_workers; struct pollfd *pfds; CALLOC_ARRAY(pfds, num_workers); for (i = 0; i < num_workers; i++) { pfds[i].fd = workers[i].cp.out; pfds[i].events = POLLIN; } while (active_workers) { int nr = poll(pfds, num_workers, -1); if (nr < 0) { if (errno == EINTR) continue; die_errno("failed to poll checkout workers"); } for (i = 0; i < num_workers && nr > 0; i++) { struct pc_worker *worker = &workers[i]; struct pollfd *pfd = &pfds[i]; if (!pfd->revents) continue; if (pfd->revents & POLLIN) { int len = packet_read(pfd->fd, packet_buffer, sizeof(packet_buffer), 0); if (len < 0) { BUG("packet_read() returned negative value"); } else if (!len) { pfd->fd = -1; active_workers--; } else { parse_and_save_result(packet_buffer, len, worker); } } else if (pfd->revents & POLLHUP) { pfd->fd = -1; active_workers--; } else if (pfd->revents & (POLLNVAL | POLLERR)) { die("error polling from checkout worker"); } nr--; } } free(pfds); } static void write_items_sequentially(struct checkout *state) { size_t i; flush_fscache(); for (i = 0; i < parallel_checkout.nr; i++) { struct parallel_checkout_item *pc_item = ¶llel_checkout.items[i]; write_pc_item(pc_item, state); if (pc_item->status != PC_ITEM_COLLIDED) advance_progress_meter(); } } int run_parallel_checkout(struct checkout *state, int num_workers, int threshold, struct progress *progress, unsigned int *progress_cnt) { int ret; if (parallel_checkout.status != PC_ACCEPTING_ENTRIES) BUG("cannot run parallel checkout: uninitialized or already running"); parallel_checkout.status = PC_RUNNING; parallel_checkout.progress = progress; parallel_checkout.progress_cnt = progress_cnt; if (parallel_checkout.nr < num_workers) num_workers = parallel_checkout.nr; if (num_workers <= 1 || parallel_checkout.nr < threshold) { write_items_sequentially(state); } else { struct pc_worker *workers = setup_workers(state, num_workers); gather_results_from_workers(workers, num_workers); finish_workers(workers, num_workers); } ret = handle_results(state); finish_parallel_checkout(); return ret; }