/* Copyright 2020 Google LLC Use of this source code is governed by a BSD-style license that can be found in the LICENSE file or at https://developers.google.com/open-source/licenses/bsd */ #include "writer.h" #include "system.h" #include "block.h" #include "constants.h" #include "record.h" #include "tree.h" #include "reftable-error.h" /* finishes a block, and writes it to storage */ static int writer_flush_block(struct reftable_writer *w); /* deallocates memory related to the index */ static void writer_clear_index(struct reftable_writer *w); /* finishes writing a 'r' (refs) or 'g' (reflogs) section */ static int writer_finish_public_section(struct reftable_writer *w); static struct reftable_block_stats * writer_reftable_block_stats(struct reftable_writer *w, uint8_t typ) { switch (typ) { case 'r': return &w->stats.ref_stats; case 'o': return &w->stats.obj_stats; case 'i': return &w->stats.idx_stats; case 'g': return &w->stats.log_stats; } abort(); return NULL; } /* write data, queuing the padding for the next write. Returns negative for * error. */ static int padded_write(struct reftable_writer *w, uint8_t *data, size_t len, int padding) { int n = 0; if (w->pending_padding > 0) { uint8_t *zeroed = reftable_calloc(w->pending_padding, sizeof(*zeroed)); int n = w->write(w->write_arg, zeroed, w->pending_padding); if (n < 0) return n; w->pending_padding = 0; reftable_free(zeroed); } w->pending_padding = padding; n = w->write(w->write_arg, data, len); if (n < 0) return n; n += padding; return 0; } static void options_set_defaults(struct reftable_write_options *opts) { if (opts->restart_interval == 0) { opts->restart_interval = 16; } if (opts->hash_id == 0) { opts->hash_id = GIT_SHA1_FORMAT_ID; } if (opts->block_size == 0) { opts->block_size = DEFAULT_BLOCK_SIZE; } } static int writer_version(struct reftable_writer *w) { return (w->opts.hash_id == 0 || w->opts.hash_id == GIT_SHA1_FORMAT_ID) ? 1 : 2; } static int writer_write_header(struct reftable_writer *w, uint8_t *dest) { memcpy(dest, "REFT", 4); dest[4] = writer_version(w); put_be24(dest + 5, w->opts.block_size); put_be64(dest + 8, w->min_update_index); put_be64(dest + 16, w->max_update_index); if (writer_version(w) == 2) { put_be32(dest + 24, w->opts.hash_id); } return header_size(writer_version(w)); } static void writer_reinit_block_writer(struct reftable_writer *w, uint8_t typ) { int block_start = 0; if (w->next == 0) { block_start = header_size(writer_version(w)); } strbuf_reset(&w->last_key); block_writer_init(&w->block_writer_data, typ, w->block, w->opts.block_size, block_start, hash_size(w->opts.hash_id)); w->block_writer = &w->block_writer_data; w->block_writer->restart_interval = w->opts.restart_interval; } struct reftable_writer * reftable_new_writer(ssize_t (*writer_func)(void *, const void *, size_t), int (*flush_func)(void *), void *writer_arg, const struct reftable_write_options *_opts) { struct reftable_writer *wp = reftable_calloc(1, sizeof(*wp)); struct reftable_write_options opts = {0}; if (_opts) opts = *_opts; options_set_defaults(&opts); if (opts.block_size >= (1 << 24)) BUG("configured block size exceeds 16MB"); strbuf_init(&wp->block_writer_data.last_key, 0); strbuf_init(&wp->last_key, 0); REFTABLE_CALLOC_ARRAY(wp->block, opts.block_size); wp->write = writer_func; wp->write_arg = writer_arg; wp->opts = opts; wp->flush = flush_func; writer_reinit_block_writer(wp, BLOCK_TYPE_REF); return wp; } void reftable_writer_set_limits(struct reftable_writer *w, uint64_t min, uint64_t max) { w->min_update_index = min; w->max_update_index = max; } static void writer_release(struct reftable_writer *w) { if (w) { reftable_free(w->block); w->block = NULL; block_writer_release(&w->block_writer_data); w->block_writer = NULL; writer_clear_index(w); strbuf_release(&w->last_key); } } void reftable_writer_free(struct reftable_writer *w) { writer_release(w); reftable_free(w); } struct obj_index_tree_node { struct strbuf hash; uint64_t *offsets; size_t offset_len; size_t offset_cap; }; #define OBJ_INDEX_TREE_NODE_INIT \ { \ .hash = STRBUF_INIT \ } static int obj_index_tree_node_compare(const void *a, const void *b) { return strbuf_cmp(&((const struct obj_index_tree_node *)a)->hash, &((const struct obj_index_tree_node *)b)->hash); } static void writer_index_hash(struct reftable_writer *w, struct strbuf *hash) { uint64_t off = w->next; struct obj_index_tree_node want = { .hash = *hash }; struct tree_node *node = tree_search(&want, &w->obj_index_tree, &obj_index_tree_node_compare, 0); struct obj_index_tree_node *key = NULL; if (!node) { struct obj_index_tree_node empty = OBJ_INDEX_TREE_NODE_INIT; key = reftable_malloc(sizeof(struct obj_index_tree_node)); *key = empty; strbuf_reset(&key->hash); strbuf_addbuf(&key->hash, hash); tree_search((void *)key, &w->obj_index_tree, &obj_index_tree_node_compare, 1); } else { key = node->key; } if (key->offset_len > 0 && key->offsets[key->offset_len - 1] == off) { return; } REFTABLE_ALLOC_GROW(key->offsets, key->offset_len + 1, key->offset_cap); key->offsets[key->offset_len++] = off; } static int writer_add_record(struct reftable_writer *w, struct reftable_record *rec) { struct strbuf key = STRBUF_INIT; int err; reftable_record_key(rec, &key); if (strbuf_cmp(&w->last_key, &key) >= 0) { err = REFTABLE_API_ERROR; goto done; } strbuf_reset(&w->last_key); strbuf_addbuf(&w->last_key, &key); if (!w->block_writer) writer_reinit_block_writer(w, reftable_record_type(rec)); if (block_writer_type(w->block_writer) != reftable_record_type(rec)) BUG("record of type %d added to writer of type %d", reftable_record_type(rec), block_writer_type(w->block_writer)); /* * Try to add the record to the writer. If this succeeds then we're * done. Otherwise the block writer may have hit the block size limit * and needs to be flushed. */ if (!block_writer_add(w->block_writer, rec)) { err = 0; goto done; } /* * The current block is full, so we need to flush and reinitialize the * writer to start writing the next block. */ err = writer_flush_block(w); if (err < 0) goto done; writer_reinit_block_writer(w, reftable_record_type(rec)); /* * Try to add the record to the writer again. If this still fails then * the record does not fit into the block size. * * TODO: it would be great to have `block_writer_add()` return proper * error codes so that we don't have to second-guess the failure * mode here. */ err = block_writer_add(w->block_writer, rec); if (err) { err = REFTABLE_ENTRY_TOO_BIG_ERROR; goto done; } done: strbuf_release(&key); return err; } int reftable_writer_add_ref(struct reftable_writer *w, struct reftable_ref_record *ref) { struct reftable_record rec = { .type = BLOCK_TYPE_REF, .u = { .ref = *ref }, }; int err = 0; if (!ref->refname) return REFTABLE_API_ERROR; if (ref->update_index < w->min_update_index || ref->update_index > w->max_update_index) return REFTABLE_API_ERROR; rec.u.ref.update_index -= w->min_update_index; err = writer_add_record(w, &rec); if (err < 0) return err; if (!w->opts.skip_index_objects && reftable_ref_record_val1(ref)) { struct strbuf h = STRBUF_INIT; strbuf_add(&h, (char *)reftable_ref_record_val1(ref), hash_size(w->opts.hash_id)); writer_index_hash(w, &h); strbuf_release(&h); } if (!w->opts.skip_index_objects && reftable_ref_record_val2(ref)) { struct strbuf h = STRBUF_INIT; strbuf_add(&h, reftable_ref_record_val2(ref), hash_size(w->opts.hash_id)); writer_index_hash(w, &h); strbuf_release(&h); } return 0; } int reftable_writer_add_refs(struct reftable_writer *w, struct reftable_ref_record *refs, int n) { int err = 0; int i = 0; QSORT(refs, n, reftable_ref_record_compare_name); for (i = 0; err == 0 && i < n; i++) { err = reftable_writer_add_ref(w, &refs[i]); } return err; } static int reftable_writer_add_log_verbatim(struct reftable_writer *w, struct reftable_log_record *log) { struct reftable_record rec = { .type = BLOCK_TYPE_LOG, .u = { .log = *log, }, }; if (w->block_writer && block_writer_type(w->block_writer) == BLOCK_TYPE_REF) { int err = writer_finish_public_section(w); if (err < 0) return err; } w->next -= w->pending_padding; w->pending_padding = 0; return writer_add_record(w, &rec); } int reftable_writer_add_log(struct reftable_writer *w, struct reftable_log_record *log) { char *input_log_message = NULL; struct strbuf cleaned_message = STRBUF_INIT; int err = 0; if (log->value_type == REFTABLE_LOG_DELETION) return reftable_writer_add_log_verbatim(w, log); if (!log->refname) return REFTABLE_API_ERROR; input_log_message = log->value.update.message; if (!w->opts.exact_log_message && log->value.update.message) { strbuf_addstr(&cleaned_message, log->value.update.message); while (cleaned_message.len && cleaned_message.buf[cleaned_message.len - 1] == '\n') strbuf_setlen(&cleaned_message, cleaned_message.len - 1); if (strchr(cleaned_message.buf, '\n')) { /* multiple lines not allowed. */ err = REFTABLE_API_ERROR; goto done; } strbuf_addstr(&cleaned_message, "\n"); log->value.update.message = cleaned_message.buf; } err = reftable_writer_add_log_verbatim(w, log); log->value.update.message = input_log_message; done: strbuf_release(&cleaned_message); return err; } int reftable_writer_add_logs(struct reftable_writer *w, struct reftable_log_record *logs, int n) { int err = 0; int i = 0; QSORT(logs, n, reftable_log_record_compare_key); for (i = 0; err == 0 && i < n; i++) { err = reftable_writer_add_log(w, &logs[i]); } return err; } static int writer_finish_section(struct reftable_writer *w) { struct reftable_block_stats *bstats = NULL; uint8_t typ = block_writer_type(w->block_writer); uint64_t index_start = 0; int max_level = 0; size_t threshold = w->opts.unpadded ? 1 : 3; int before_blocks = w->stats.idx_stats.blocks; int err; err = writer_flush_block(w); if (err < 0) return err; /* * When the section we are about to index has a lot of blocks then the * index itself may span across multiple blocks, as well. This would * require a linear scan over index blocks only to find the desired * indexed block, which is inefficient. Instead, we write a multi-level * index where index records of level N+1 will refer to index blocks of * level N. This isn't constant time, either, but at least logarithmic. * * This loop handles writing this multi-level index. Note that we write * the lowest-level index pointing to the indexed blocks first. We then * continue writing additional index levels until the current level has * less blocks than the threshold so that the highest level will be at * the end of the index section. * * Readers are thus required to start reading the index section from * its end, which is why we set `index_start` to the beginning of the * last index section. */ while (w->index_len > threshold) { struct reftable_index_record *idx = NULL; size_t i, idx_len; max_level++; index_start = w->next; writer_reinit_block_writer(w, BLOCK_TYPE_INDEX); idx = w->index; idx_len = w->index_len; w->index = NULL; w->index_len = 0; w->index_cap = 0; for (i = 0; i < idx_len; i++) { struct reftable_record rec = { .type = BLOCK_TYPE_INDEX, .u = { .idx = idx[i], }, }; err = writer_add_record(w, &rec); if (err < 0) return err; } err = writer_flush_block(w); if (err < 0) return err; for (i = 0; i < idx_len; i++) strbuf_release(&idx[i].last_key); reftable_free(idx); } /* * The index may still contain a number of index blocks lower than the * threshold. Clear it so that these entries don't leak into the next * index section. */ writer_clear_index(w); bstats = writer_reftable_block_stats(w, typ); bstats->index_blocks = w->stats.idx_stats.blocks - before_blocks; bstats->index_offset = index_start; bstats->max_index_level = max_level; /* Reinit lastKey, as the next section can start with any key. */ strbuf_reset(&w->last_key); return 0; } struct common_prefix_arg { struct strbuf *last; int max; }; static void update_common(void *void_arg, void *key) { struct common_prefix_arg *arg = void_arg; struct obj_index_tree_node *entry = key; if (arg->last) { int n = common_prefix_size(&entry->hash, arg->last); if (n > arg->max) { arg->max = n; } } arg->last = &entry->hash; } struct write_record_arg { struct reftable_writer *w; int err; }; static void write_object_record(void *void_arg, void *key) { struct write_record_arg *arg = void_arg; struct obj_index_tree_node *entry = key; struct reftable_record rec = { .type = BLOCK_TYPE_OBJ, .u.obj = { .hash_prefix = (uint8_t *)entry->hash.buf, .hash_prefix_len = arg->w->stats.object_id_len, .offsets = entry->offsets, .offset_len = entry->offset_len, } }; if (arg->err < 0) goto done; arg->err = block_writer_add(arg->w->block_writer, &rec); if (arg->err == 0) goto done; arg->err = writer_flush_block(arg->w); if (arg->err < 0) goto done; writer_reinit_block_writer(arg->w, BLOCK_TYPE_OBJ); arg->err = block_writer_add(arg->w->block_writer, &rec); if (arg->err == 0) goto done; rec.u.obj.offset_len = 0; arg->err = block_writer_add(arg->w->block_writer, &rec); /* Should be able to write into a fresh block. */ assert(arg->err == 0); done:; } static void object_record_free(void *void_arg, void *key) { struct obj_index_tree_node *entry = key; FREE_AND_NULL(entry->offsets); strbuf_release(&entry->hash); reftable_free(entry); } static int writer_dump_object_index(struct reftable_writer *w) { struct write_record_arg closure = { .w = w }; struct common_prefix_arg common = { .max = 1, /* obj_id_len should be >= 2. */ }; if (w->obj_index_tree) { infix_walk(w->obj_index_tree, &update_common, &common); } w->stats.object_id_len = common.max + 1; writer_reinit_block_writer(w, BLOCK_TYPE_OBJ); if (w->obj_index_tree) { infix_walk(w->obj_index_tree, &write_object_record, &closure); } if (closure.err < 0) return closure.err; return writer_finish_section(w); } static int writer_finish_public_section(struct reftable_writer *w) { uint8_t typ = 0; int err = 0; if (!w->block_writer) return 0; typ = block_writer_type(w->block_writer); err = writer_finish_section(w); if (err < 0) return err; if (typ == BLOCK_TYPE_REF && !w->opts.skip_index_objects && w->stats.ref_stats.index_blocks > 0) { err = writer_dump_object_index(w); if (err < 0) return err; } if (w->obj_index_tree) { infix_walk(w->obj_index_tree, &object_record_free, NULL); tree_free(w->obj_index_tree); w->obj_index_tree = NULL; } w->block_writer = NULL; return 0; } int reftable_writer_close(struct reftable_writer *w) { uint8_t footer[72]; uint8_t *p = footer; int err = writer_finish_public_section(w); int empty_table = w->next == 0; if (err != 0) goto done; w->pending_padding = 0; if (empty_table) { /* Empty tables need a header anyway. */ uint8_t header[28]; int n = writer_write_header(w, header); err = padded_write(w, header, n, 0); if (err < 0) goto done; } p += writer_write_header(w, footer); put_be64(p, w->stats.ref_stats.index_offset); p += 8; put_be64(p, (w->stats.obj_stats.offset) << 5 | w->stats.object_id_len); p += 8; put_be64(p, w->stats.obj_stats.index_offset); p += 8; put_be64(p, w->stats.log_stats.offset); p += 8; put_be64(p, w->stats.log_stats.index_offset); p += 8; put_be32(p, crc32(0, footer, p - footer)); p += 4; err = w->flush(w->write_arg); if (err < 0) { err = REFTABLE_IO_ERROR; goto done; } err = padded_write(w, footer, footer_size(writer_version(w)), 0); if (err < 0) goto done; if (empty_table) { err = REFTABLE_EMPTY_TABLE_ERROR; goto done; } done: writer_release(w); return err; } static void writer_clear_index(struct reftable_writer *w) { for (size_t i = 0; w->index && i < w->index_len; i++) strbuf_release(&w->index[i].last_key); FREE_AND_NULL(w->index); w->index_len = 0; w->index_cap = 0; } static int writer_flush_nonempty_block(struct reftable_writer *w) { struct reftable_index_record index_record = { .last_key = STRBUF_INIT, }; uint8_t typ = block_writer_type(w->block_writer); struct reftable_block_stats *bstats; int raw_bytes, padding = 0, err; uint64_t block_typ_off; /* * Finish the current block. This will cause the block writer to emit * restart points and potentially compress records in case we are * writing a log block. * * Note that this is still happening in memory. */ raw_bytes = block_writer_finish(w->block_writer); if (raw_bytes < 0) return raw_bytes; /* * By default, all records except for log records are padded to the * block size. */ if (!w->opts.unpadded && typ != BLOCK_TYPE_LOG) padding = w->opts.block_size - raw_bytes; bstats = writer_reftable_block_stats(w, typ); block_typ_off = (bstats->blocks == 0) ? w->next : 0; if (block_typ_off > 0) bstats->offset = block_typ_off; bstats->entries += w->block_writer->entries; bstats->restarts += w->block_writer->restart_len; bstats->blocks++; w->stats.blocks++; /* * If this is the first block we're writing to the table then we need * to also write the reftable header. */ if (!w->next) writer_write_header(w, w->block); err = padded_write(w, w->block, raw_bytes, padding); if (err < 0) return err; /* * Add an index record for every block that we're writing. If we end up * having more than a threshold of index records we will end up writing * an index section in `writer_finish_section()`. Each index record * contains the last record key of the block it is indexing as well as * the offset of that block. * * Note that this also applies when flushing index blocks, in which * case we will end up with a multi-level index. */ REFTABLE_ALLOC_GROW(w->index, w->index_len + 1, w->index_cap); index_record.offset = w->next; strbuf_reset(&index_record.last_key); strbuf_addbuf(&index_record.last_key, &w->block_writer->last_key); w->index[w->index_len] = index_record; w->index_len++; w->next += padding + raw_bytes; w->block_writer = NULL; return 0; } static int writer_flush_block(struct reftable_writer *w) { if (!w->block_writer) return 0; if (w->block_writer->entries == 0) return 0; return writer_flush_nonempty_block(w); } const struct reftable_stats *reftable_writer_stats(struct reftable_writer *w) { return &w->stats; }