/* exec.c: Glulxe code for program execution. The main interpreter loop. Designed by Andrew Plotkin http://eblong.com/zarf/glulx/index.html */ #include "glk.h" #include "glulxe.h" #include "opcodes.h" #ifdef FLOAT_SUPPORT #include #endif /* FLOAT_SUPPORT */ /* execute_loop(): The main interpreter loop. This repeats until the program is done. */ void execute_loop() { int done_executing = FALSE; int ix; glui32 opcode; operandlist_t *oplist; oparg_t inst[MAX_OPERANDS]; glui32 value, addr, val0, val1; glsi32 vals0, vals1; glui32 *arglist; glui32 arglistfix[3]; #ifdef FLOAT_SUPPORT gfloat32 valf, valf1, valf2; #endif /* FLOAT_SUPPORT */ while (!done_executing) { profile_tick(); debugger_tick(); /* Do OS-specific processing, if appropriate. */ glk_tick(); /* Stash the current opcode's address, in case the interpreter needs to serialize the VM state out-of-band. */ prevpc = pc; /* Fetch the opcode number. */ opcode = Mem1(pc); pc++; if (opcode & 0x80) { /* More than one-byte opcode. */ if (opcode & 0x40) { /* Four-byte opcode */ opcode &= 0x3F; opcode = (opcode << 8) | Mem1(pc); pc++; opcode = (opcode << 8) | Mem1(pc); pc++; opcode = (opcode << 8) | Mem1(pc); pc++; } else { /* Two-byte opcode */ opcode &= 0x7F; opcode = (opcode << 8) | Mem1(pc); pc++; } } /* Now we have an opcode number. */ /* Fetch the structure that describes how the operands for this opcode are arranged. This is a pointer to an immutable, static object. */ if (opcode < 0x80) oplist = fast_operandlist[opcode]; else oplist = lookup_operandlist(opcode); if (!oplist) fatal_error_i("Encountered unknown opcode.", opcode); /* Based on the oplist structure, load the actual operand values into inst. This moves the PC up to the end of the instruction. */ parse_operands(inst, oplist); /* Perform the opcode. This switch statement is split in two, based on some paranoid suspicions about the ability of compilers to optimize large-range switches. Ignore that. */ if (opcode < 0x80) { switch (opcode) { case op_nop: break; case op_add: value = inst[0].value + inst[1].value; store_operand(inst[2].desttype, inst[2].value, value); break; case op_sub: value = inst[0].value - inst[1].value; store_operand(inst[2].desttype, inst[2].value, value); break; case op_mul: value = inst[0].value * inst[1].value; store_operand(inst[2].desttype, inst[2].value, value); break; case op_div: vals0 = inst[0].value; vals1 = inst[1].value; if (vals1 == 0) fatal_error("Division by zero."); /* Since C doesn't guarantee the results of division of negative numbers, we carefully convert everything to positive values first. They have to be unsigned values, too, otherwise the 0x80000000 case goes wonky. */ if (vals0 < 0) { val0 = (-vals0); if (vals1 < 0) { val1 = (-vals1); value = val0 / val1; } else { val1 = vals1; value = -(val0 / val1); } } else { val0 = vals0; if (vals1 < 0) { val1 = (-vals1); value = -(val0 / val1); } else { val1 = vals1; value = val0 / val1; } } store_operand(inst[2].desttype, inst[2].value, value); break; case op_mod: vals0 = inst[0].value; vals1 = inst[1].value; if (vals1 == 0) fatal_error("Division by zero doing remainder."); if (vals1 < 0) { val1 = -vals1; } else { val1 = vals1; } if (vals0 < 0) { val0 = (-vals0); value = -(val0 % val1); } else { val0 = vals0; value = val0 % val1; } store_operand(inst[2].desttype, inst[2].value, value); break; case op_neg: vals0 = inst[0].value; value = (-vals0); store_operand(inst[1].desttype, inst[1].value, value); break; case op_bitand: value = (inst[0].value & inst[1].value); store_operand(inst[2].desttype, inst[2].value, value); break; case op_bitor: value = (inst[0].value | inst[1].value); store_operand(inst[2].desttype, inst[2].value, value); break; case op_bitxor: value = (inst[0].value ^ inst[1].value); store_operand(inst[2].desttype, inst[2].value, value); break; case op_bitnot: value = ~(inst[0].value); store_operand(inst[1].desttype, inst[1].value, value); break; case op_shiftl: vals0 = inst[1].value; if (vals0 < 0 || vals0 >= 32) value = 0; else value = ((glui32)(inst[0].value) << (glui32)vals0); store_operand(inst[2].desttype, inst[2].value, value); break; case op_ushiftr: vals0 = inst[1].value; if (vals0 < 0 || vals0 >= 32) value = 0; else value = ((glui32)(inst[0].value) >> (glui32)vals0); store_operand(inst[2].desttype, inst[2].value, value); break; case op_sshiftr: vals0 = inst[1].value; if (vals0 < 0 || vals0 >= 32) { if (inst[0].value & 0x80000000) value = 0xFFFFFFFF; else value = 0; } else { /* This is somewhat foolhardy -- C doesn't guarantee that right-shifting a signed value replicates the sign bit. We'll assume it for now. */ value = ((glsi32)(inst[0].value) >> (glsi32)vals0); } store_operand(inst[2].desttype, inst[2].value, value); break; case op_jump: value = inst[0].value; /* fall through to PerformJump label. */ PerformJump: /* goto label for successful jumping... ironic, no? */ if (value == 0 || value == 1) { /* Return from function. This is exactly what happens in return_op, but it's only a few lines of code, so I won't bother with a "goto". */ leave_function(); if (stackptr == 0) { done_executing = TRUE; break; } pop_callstub(value); /* zero or one */ } else { /* Branch to a new PC value. */ pc = (pc + value - 2); } break; case op_jz: if (inst[0].value == 0) { value = inst[1].value; goto PerformJump; } break; case op_jnz: if (inst[0].value != 0) { value = inst[1].value; goto PerformJump; } break; case op_jeq: if (inst[0].value == inst[1].value) { value = inst[2].value; goto PerformJump; } break; case op_jne: if (inst[0].value != inst[1].value) { value = inst[2].value; goto PerformJump; } break; case op_jlt: vals0 = inst[0].value; vals1 = inst[1].value; if (vals0 < vals1) { value = inst[2].value; goto PerformJump; } break; case op_jgt: vals0 = inst[0].value; vals1 = inst[1].value; if (vals0 > vals1) { value = inst[2].value; goto PerformJump; } break; case op_jle: vals0 = inst[0].value; vals1 = inst[1].value; if (vals0 <= vals1) { value = inst[2].value; goto PerformJump; } break; case op_jge: vals0 = inst[0].value; vals1 = inst[1].value; if (vals0 >= vals1) { value = inst[2].value; goto PerformJump; } break; case op_jltu: val0 = inst[0].value; val1 = inst[1].value; if (val0 < val1) { value = inst[2].value; goto PerformJump; } break; case op_jgtu: val0 = inst[0].value; val1 = inst[1].value; if (val0 > val1) { value = inst[2].value; goto PerformJump; } break; case op_jleu: val0 = inst[0].value; val1 = inst[1].value; if (val0 <= val1) { value = inst[2].value; goto PerformJump; } break; case op_jgeu: val0 = inst[0].value; val1 = inst[1].value; if (val0 >= val1) { value = inst[2].value; goto PerformJump; } break; case op_call: value = inst[1].value; arglist = pop_arguments(value, 0); push_callstub(inst[2].desttype, inst[2].value); enter_function(inst[0].value, value, arglist); break; case op_return: leave_function(); if (stackptr == 0) { done_executing = TRUE; break; } pop_callstub(inst[0].value); break; case op_tailcall: value = inst[1].value; arglist = pop_arguments(value, 0); leave_function(); enter_function(inst[0].value, value, arglist); break; case op_catch: push_callstub(inst[0].desttype, inst[0].value); value = inst[1].value; val0 = stackptr; store_operand(inst[0].desttype, inst[0].value, val0); goto PerformJump; break; case op_throw: profile_fail("throw"); value = inst[0].value; stackptr = inst[1].value; pop_callstub(value); break; case op_copy: value = inst[0].value; #ifdef TOLERATE_SUPERGLUS_BUG if (inst[1].desttype == 1 && inst[1].value == 0) inst[1].desttype = 0; #endif /* TOLERATE_SUPERGLUS_BUG */ store_operand(inst[1].desttype, inst[1].value, value); break; case op_copys: value = inst[0].value; store_operand_s(inst[1].desttype, inst[1].value, value); break; case op_copyb: value = inst[0].value; store_operand_b(inst[1].desttype, inst[1].value, value); break; case op_sexs: val0 = inst[0].value; if (val0 & 0x8000) val0 |= 0xFFFF0000; else val0 &= 0x0000FFFF; store_operand(inst[1].desttype, inst[1].value, val0); break; case op_sexb: val0 = inst[0].value; if (val0 & 0x80) val0 |= 0xFFFFFF00; else val0 &= 0x000000FF; store_operand(inst[1].desttype, inst[1].value, val0); break; case op_aload: value = inst[0].value; value += 4 * inst[1].value; val0 = Mem4(value); store_operand(inst[2].desttype, inst[2].value, val0); break; case op_aloads: value = inst[0].value; value += 2 * inst[1].value; val0 = Mem2(value); store_operand(inst[2].desttype, inst[2].value, val0); break; case op_aloadb: value = inst[0].value; value += inst[1].value; val0 = Mem1(value); store_operand(inst[2].desttype, inst[2].value, val0); break; case op_aloadbit: value = inst[0].value; vals0 = inst[1].value; val1 = (vals0 & 7); if (vals0 >= 0) value += (vals0 >> 3); else value -= (1 + ((-1 - vals0) >> 3)); if (Mem1(value) & (1 << val1)) val0 = 1; else val0 = 0; store_operand(inst[2].desttype, inst[2].value, val0); break; case op_astore: value = inst[0].value; value += 4 * inst[1].value; val0 = inst[2].value; MemW4(value, val0); break; case op_astores: value = inst[0].value; value += 2 * inst[1].value; val0 = inst[2].value; MemW2(value, val0); break; case op_astoreb: value = inst[0].value; value += inst[1].value; val0 = inst[2].value; MemW1(value, val0); break; case op_astorebit: value = inst[0].value; vals0 = inst[1].value; val1 = (vals0 & 7); if (vals0 >= 0) value += (vals0 >> 3); else value -= (1 + ((-1 - vals0) >> 3)); val0 = Mem1(value); if (inst[2].value) val0 |= (1 << val1); else val0 &= ~((glui32)(1 << val1)); MemW1(value, val0); break; case op_stkcount: value = (stackptr - valstackbase) / 4; store_operand(inst[0].desttype, inst[0].value, value); break; case op_stkpeek: vals0 = inst[0].value * 4; if (vals0 < 0 || vals0 >= (stackptr - valstackbase)) fatal_error("Stkpeek outside current stack range."); value = Stk4(stackptr - (vals0+4)); store_operand(inst[1].desttype, inst[1].value, value); break; case op_stkswap: if (stackptr < valstackbase+8) { fatal_error("Stack underflow in stkswap."); } val0 = Stk4(stackptr-4); val1 = Stk4(stackptr-8); StkW4(stackptr-4, val1); StkW4(stackptr-8, val0); break; case op_stkcopy: vals0 = inst[0].value; if (vals0 < 0) fatal_error("Negative operand in stkcopy."); if (vals0 == 0) break; if (stackptr < valstackbase+vals0*4) fatal_error("Stack underflow in stkcopy."); if (stackptr + vals0*4 > stacksize) fatal_error("Stack overflow in stkcopy."); addr = stackptr - vals0*4; for (ix=0; ix 0) { vals1 = vals1 % vals0; vals1 = (vals0) - vals1; } else { vals1 = (-vals1) % vals0; } if (vals1 == 0) break; addr = stackptr - vals0*4; for (ix=0; ix= 1) value = glulx_random() % (glui32)(vals0); else value = -(glulx_random() % (glui32)(-vals0)); store_operand(inst[1].desttype, inst[1].value, value); break; case op_setrandom: glulx_setrandom(inst[0].value); break; case op_verify: value = perform_verify(); store_operand(inst[0].desttype, inst[0].value, value); break; case op_restart: profile_fail("restart"); vm_restart(); break; case op_protect: val0 = inst[0].value; val1 = val0 + inst[1].value; if (val0 == val1) { val0 = 0; val1 = 0; } protectstart = val0; protectend = val1; break; case op_save: push_callstub(inst[1].desttype, inst[1].value); value = perform_save(find_stream_by_id(inst[0].value)); pop_callstub(value); break; case op_restore: value = perform_restore(find_stream_by_id(inst[0].value), FALSE); if (value == 0) { /* We've succeeded, and the stack now contains the callstub saved during saveundo. Ignore this opcode's operand. */ value = -1; pop_callstub(value); } else { /* We've failed, so we must store the failure in this opcode's operand. */ store_operand(inst[1].desttype, inst[1].value, value); } break; case op_saveundo: push_callstub(inst[0].desttype, inst[0].value); value = perform_saveundo(); pop_callstub(value); break; case op_restoreundo: value = perform_restoreundo(); if (value == 0) { /* We've succeeded, and the stack now contains the callstub saved during saveundo. Ignore this opcode's operand. */ value = -1; pop_callstub(value); } else { /* We've failed, so we must store the failure in this opcode's operand. */ store_operand(inst[0].desttype, inst[0].value, value); } break; case op_quit: done_executing = TRUE; break; case op_linearsearch: value = linear_search(inst[0].value, inst[1].value, inst[2].value, inst[3].value, inst[4].value, inst[5].value, inst[6].value); store_operand(inst[7].desttype, inst[7].value, value); break; case op_binarysearch: value = binary_search(inst[0].value, inst[1].value, inst[2].value, inst[3].value, inst[4].value, inst[5].value, inst[6].value); store_operand(inst[7].desttype, inst[7].value, value); break; case op_linkedsearch: value = linked_search(inst[0].value, inst[1].value, inst[2].value, inst[3].value, inst[4].value, inst[5].value); store_operand(inst[6].desttype, inst[6].value, value); break; case op_mzero: { glui32 lx; glui32 count = inst[0].value; addr = inst[1].value; for (lx=0; lx 2147483647.0)) vals0 = 0x7FFFFFFF; else vals0 = (glsi32)(truncf(valf)); } else { if (isnan(valf) || isinf(valf) || (valf < -2147483647.0)) vals0 = 0x80000000; else vals0 = (glsi32)(truncf(valf)); } store_operand(inst[1].desttype, inst[1].value, vals0); break; case op_ftonumn: valf = decode_float(inst[0].value); if (!signbit(valf)) { if (isnan(valf) || isinf(valf) || (valf > 2147483647.0)) vals0 = 0x7FFFFFFF; else vals0 = (glsi32)(roundf(valf)); } else { if (isnan(valf) || isinf(valf) || (valf < -2147483647.0)) vals0 = 0x80000000; else vals0 = (glsi32)(roundf(valf)); } store_operand(inst[1].desttype, inst[1].value, vals0); break; case op_fadd: valf1 = decode_float(inst[0].value); valf2 = decode_float(inst[1].value); value = encode_float(valf1 + valf2); store_operand(inst[2].desttype, inst[2].value, value); break; case op_fsub: valf1 = decode_float(inst[0].value); valf2 = decode_float(inst[1].value); value = encode_float(valf1 - valf2); store_operand(inst[2].desttype, inst[2].value, value); break; case op_fmul: valf1 = decode_float(inst[0].value); valf2 = decode_float(inst[1].value); value = encode_float(valf1 * valf2); store_operand(inst[2].desttype, inst[2].value, value); break; case op_fdiv: valf1 = decode_float(inst[0].value); valf2 = decode_float(inst[1].value); value = encode_float(valf1 / valf2); store_operand(inst[2].desttype, inst[2].value, value); break; case op_fmod: valf1 = decode_float(inst[0].value); valf2 = decode_float(inst[1].value); valf = fmodf(valf1, valf2); val0 = encode_float(valf); val1 = encode_float((valf1-valf) / valf2); if (val1 == 0x0 || val1 == 0x80000000) { /* When the quotient is zero, the sign has been lost in the shuffle. We'll set that by hand, based on the original arguments. */ val1 = (inst[0].value ^ inst[1].value) & 0x80000000; } store_operand(inst[2].desttype, inst[2].value, val0); store_operand(inst[3].desttype, inst[3].value, val1); break; case op_floor: valf = decode_float(inst[0].value); value = encode_float(floorf(valf)); store_operand(inst[1].desttype, inst[1].value, value); break; case op_ceil: valf = decode_float(inst[0].value); value = encode_float(ceilf(valf)); if (value == 0x0 || value == 0x80000000) { /* When the result is zero, the sign may have been lost in the shuffle. (This is a bug in some C libraries.) We'll set the sign by hand, based on the original argument. */ value = inst[0].value & 0x80000000; } store_operand(inst[1].desttype, inst[1].value, value); break; case op_sqrt: valf = decode_float(inst[0].value); value = encode_float(sqrtf(valf)); store_operand(inst[1].desttype, inst[1].value, value); break; case op_log: valf = decode_float(inst[0].value); value = encode_float(logf(valf)); store_operand(inst[1].desttype, inst[1].value, value); break; case op_exp: valf = decode_float(inst[0].value); value = encode_float(expf(valf)); store_operand(inst[1].desttype, inst[1].value, value); break; case op_pow: valf1 = decode_float(inst[0].value); valf2 = decode_float(inst[1].value); value = encode_float(glulx_powf(valf1, valf2)); store_operand(inst[2].desttype, inst[2].value, value); break; case op_sin: valf = decode_float(inst[0].value); value = encode_float(sinf(valf)); store_operand(inst[1].desttype, inst[1].value, value); break; case op_cos: valf = decode_float(inst[0].value); value = encode_float(cosf(valf)); store_operand(inst[1].desttype, inst[1].value, value); break; case op_tan: valf = decode_float(inst[0].value); value = encode_float(tanf(valf)); store_operand(inst[1].desttype, inst[1].value, value); break; case op_asin: valf = decode_float(inst[0].value); value = encode_float(asinf(valf)); store_operand(inst[1].desttype, inst[1].value, value); break; case op_acos: valf = decode_float(inst[0].value); value = encode_float(acosf(valf)); store_operand(inst[1].desttype, inst[1].value, value); break; case op_atan: valf = decode_float(inst[0].value); value = encode_float(atanf(valf)); store_operand(inst[1].desttype, inst[1].value, value); break; case op_atan2: valf1 = decode_float(inst[0].value); valf2 = decode_float(inst[1].value); value = encode_float(atan2f(valf1, valf2)); store_operand(inst[2].desttype, inst[2].value, value); break; case op_jisinf: /* Infinity is well-defined, so we don't bother to convert to float. */ val0 = inst[0].value; if (val0 == 0x7F800000 || val0 == 0xFF800000) { value = inst[1].value; goto PerformJump; } break; case op_jisnan: /* NaN is well-defined, so we don't bother to convert to float. */ val0 = inst[0].value; if ((val0 & 0x7F800000) == 0x7F800000 && (val0 & 0x007FFFFF) != 0) { value = inst[1].value; goto PerformJump; } break; case op_jfeq: if ((inst[2].value & 0x7F800000) == 0x7F800000 && (inst[2].value & 0x007FFFFF) != 0) { /* The delta is NaN, which can never match. */ val0 = 0; } else if ((inst[0].value == 0x7F800000 || inst[0].value == 0xFF800000) && (inst[1].value == 0x7F800000 || inst[1].value == 0xFF800000)) { /* Both are infinite. Opposite infinities are never equal, even if the difference is infinite, so this is easy. */ val0 = (inst[0].value == inst[1].value); } else { valf1 = decode_float(inst[1].value) - decode_float(inst[0].value); valf2 = fabs(decode_float(inst[2].value)); val0 = (valf1 <= valf2 && valf1 >= -valf2); } if (val0) { value = inst[3].value; goto PerformJump; } break; case op_jfne: if ((inst[2].value & 0x7F800000) == 0x7F800000 && (inst[2].value & 0x007FFFFF) != 0) { /* The delta is NaN, which can never match. */ val0 = 0; } else if ((inst[0].value == 0x7F800000 || inst[0].value == 0xFF800000) && (inst[1].value == 0x7F800000 || inst[1].value == 0xFF800000)) { /* Both are infinite. Opposite infinities are never equal, even if the difference is infinite, so this is easy. */ val0 = (inst[0].value == inst[1].value); } else { valf1 = decode_float(inst[1].value) - decode_float(inst[0].value); valf2 = fabs(decode_float(inst[2].value)); val0 = (valf1 <= valf2 && valf1 >= -valf2); } if (!val0) { value = inst[3].value; goto PerformJump; } break; case op_jflt: valf1 = decode_float(inst[0].value); valf2 = decode_float(inst[1].value); if (valf1 < valf2) { value = inst[2].value; goto PerformJump; } break; case op_jfgt: valf1 = decode_float(inst[0].value); valf2 = decode_float(inst[1].value); if (valf1 > valf2) { value = inst[2].value; goto PerformJump; } break; case op_jfle: valf1 = decode_float(inst[0].value); valf2 = decode_float(inst[1].value); if (valf1 <= valf2) { value = inst[2].value; goto PerformJump; } break; case op_jfge: valf1 = decode_float(inst[0].value); valf2 = decode_float(inst[1].value); if (valf1 >= valf2) { value = inst[2].value; goto PerformJump; } break; #endif /* FLOAT_SUPPORT */ #ifdef GLULX_EXTEND_OPCODES GLULX_EXTEND_OPCODES #endif /* GLULX_EXTEND_OPCODES */ default: fatal_error_i("Executed unknown opcode.", opcode); } } } /* done executing */ #if VM_DEBUGGER debugger_handle_quit(); #endif /* VM_DEBUGGER */ }