/* Arithmetic on lists of residues modulo n. Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2012 Paul Zimmermann and Alexander Kruppa. This file is part of the ECM Library. The ECM Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The ECM Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the ECM Library; see the file COPYING.LIB. If not, see http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include "ecm-impl.h" #ifdef DEBUG #define ASSERTD(x) assert(x) #else #define ASSERTD(x) #endif extern unsigned int Fermat; /* returns a bound on the auxiliary memory needed by list_mult_n */ int list_mul_mem (unsigned int len) { return 2 * len; } /* creates a list of n integers, return NULL if error */ listz_t init_list (unsigned int n) { listz_t p; unsigned int i; p = (mpz_t*) malloc (n * sizeof (mpz_t)); if (p == NULL) return NULL; for (i = 0; i < n; i++) mpz_init (p[i]); return p; } /* creates a list of n integers, return NULL if error. Allocates each mpz_t to the size of N bits */ listz_t init_list2 (unsigned int n, unsigned int N) { listz_t p; unsigned int i; p = (mpz_t*) malloc (n * sizeof (mpz_t)); if (p == NULL) return NULL; for (i = 0; i < n; i++) mpz_init2 (p[i], N); return p; } /* clears a list of n integers */ void clear_list (listz_t p, unsigned int n) { unsigned int i; if (p == NULL) return; for (i = 0; i < n; i++) mpz_clear (p[i]); free (p); } #ifdef DEBUG /* prints a list of n coefficients as a polynomial */ void print_list (listz_t p, unsigned int n) { unsigned int i; for (i = 0; i < n; i++) { if (i > 0 && mpz_cmp_ui (p[i], 0) >= 0) fprintf (ECM_STDOUT, "+"); mpz_out_str (ECM_STDOUT, 10, p[i]); fprintf (ECM_STDOUT, "*x^%u", i); } fprintf (ECM_STDOUT, "\n"); } static int list_check (listz_t a, unsigned int l, mpz_t n) { unsigned int i; for (i = 0; i < l; i++) if (mpz_cmp_ui (a[i], 0) < 0 || mpz_cmp (n, a[i]) <= 0) { fprintf (ECM_STDOUT, "l=%u i=%u\n", l, i); mpz_out_str (ECM_STDOUT, 10, a[i]); fprintf (ECM_STDOUT, "\n"); return 0; } return 1; } #endif /* DEBUG */ /* Read all entries in list from stream. Return 0 on success, ECM_ERROR on error */ int list_inp_raw (listz_t a, FILE *f, unsigned int n) { unsigned int i; for (i = 0; i < n; i++) if (mpz_inp_raw (a[i], f) == 0) return ECM_ERROR; return 0; } /* Write all entries in list to stream. Return 0 on success, ECM_ERROR on error */ int list_out_raw (FILE *f, listz_t a, unsigned int n) { unsigned int i; for (i = 0; i < n; i++) if (mpz_out_raw (f, a[i]) == 0) return ECM_ERROR; return 0; } /* p <- q */ void list_set (listz_t p, listz_t q, unsigned int n) { unsigned int i; for (i = 0; i < n; i++) mpz_set (p[i], q[i]); } /* p[0] <-> p[n-1], p[1] <-> p[n-2], ... */ void list_revert (listz_t p, unsigned int n) { unsigned int i; for (i = 0; i < n - 1 - i; i++) mpz_swap (p[i], p[n - 1 - i]); } void list_swap (listz_t p, listz_t q, unsigned int n) { unsigned int i; for (i = 0; i < n; i++) mpz_swap (p[i], q[i]); } /* p <- -q, keeps residues normalized */ void list_neg (listz_t p, listz_t q, unsigned int l, mpz_t n) { unsigned int i; for (i = 0; i < l; i++) { if (mpz_sgn (q[i])) mpz_sub (p[i], n, q[i]); else mpz_set_ui (p[i], 0); } } /* p <- q modulo mod */ void list_mod (listz_t p, listz_t q, unsigned int n, mpz_t mod) { unsigned int i; for (i = 0; i < n; i++) mpz_mod (p[i], q[i], mod); } /* p <- q + r */ void list_add (listz_t p, listz_t q, listz_t r, unsigned int l) { unsigned int i; for (i = 0; i < l; i++) mpz_add (p[i], q[i], r[i]); } /* p <- q - r */ void list_sub (listz_t p, listz_t q, listz_t r, unsigned int l) { unsigned int i; for (i = 0; i < l; i++) mpz_sub (p[i], q[i], r[i]); } /* Multiply up the integers in l, modulo n. Each entry becomes the product (mod n) of itself and all previous entries */ void list_mulup (listz_t l, unsigned int k, mpz_t n, mpz_t t) { unsigned int i; for (i = 1; i < k; i++) { mpz_mul (t, l[i - 1], l[i]); mpz_mod (l[i], t, n); } } /* p <- 0 */ void list_zero (listz_t p, unsigned int n) { unsigned int i; for (i = 0; i < n; i++) mpz_set_ui (p[i], 0); } /* puts in a[K-1]..a[2K-2] the K high terms of the product of b[0..K-1] and c[0..K-1]. Assumes K >= 1, and a[0..2K-2] exist. Needs space for list_mul_mem(K) in t. */ void list_mul_high (listz_t a, listz_t b, listz_t c, unsigned int K) { list_mult_n (a, b, c, K); } /* multiplies b[0]+...+b[k-1]*x^(k-1)+x^k by c[0]+...+c[l-1]*x^(l-1)+x^l and puts the results in a[0]+...+a[k+l-1]*x^(k+l-1) [the leading monomial x^(k+l) is implicit]. If monic is 0, don't consider x^k in b (and x^l in c). Assumes k = l or k = l+1. The auxiliary array t contains at least list_mul_mem(l) entries. a and t should not overlap. */ void list_mul (listz_t a, listz_t b, unsigned int k, listz_t c, unsigned int l, int monic, listz_t t) { unsigned int i, po2; ASSERT(k == l || k == l + 1); for (po2 = l; (po2 & 1) == 0; po2 >>= 1); po2 = (po2 == 1); #ifdef DEBUG if (Fermat && !(po2 && l == k)) fprintf (ECM_STDOUT, "list_mul: Fermat number, but poly lengths %d and %d\n", k, l); #endif if (po2 && Fermat) { if (monic && l == k) { F_mul (a, b, c, l, MONIC, Fermat, t); monic = 0; } else F_mul (a, b, c, l, DEFAULT, Fermat, t); } else list_mult_n (a, b, c, l); /* set a[0]...a[2l-2] */ if (k > l) /* multiply b[l]*x^l by c[0]+...+c[l-1]*x^(l-1) */ { for (i = 0; i < l - 1; i++) mpz_addmul (a[l+i], b[l], c[i]); mpz_mul (a[2*l-1], b[l], c[l-1]); } /* deal with x^k and x^l */ if (monic) { mpz_set_ui (a[k + l - 1], 0); /* Single pass over a[] */ /* a += b * x^l + c * x^k, so a[i] += b[i-l]; a[i] += c[i-k] if 0 <= i-l < k or 0 <= i-k < l, respectively */ if (k > l) /* case k = l+1 */ mpz_add (a[l], a[l], b[0]); for (i = k; i < k + l; i++) { mpz_add (a[i], a[i], b[i-l]); /* i-l < k */ mpz_add (a[i], a[i], c[i-k]); /* i-k < l */ } } } /* Multiplies b[0..k-1] by c[0..k-1], stores the result in a[0..2k-2], and stores the reduced product in a2[0..2k-2]. (Here, there is no implicit monic leading monomial.) Requires at least list_mul_mem(k) cells in t. */ void list_mulmod (listz_t a2, listz_t a, listz_t b, listz_t c, unsigned int k, listz_t t, mpz_t n) { int i; /* keep the semicolon on a separate line to silence a warning with clang */ for (i = k; (i & 1) == 0; i >>= 1) ; ASSERTD(list_check(b,k,n)); ASSERTD(list_check(c,k,n)); if (i == 1 && Fermat) F_mul (a, b, c, k, DEFAULT, Fermat, t); else list_mult_n (a, b, c, k); /* set a[0]...a[2l-2] */ list_mod (a2, a, 2 * k - 1, n); } /* puts in G[0]..G[k-1] the coefficients from (x+a[0])...(x+a[k-1]) Warning: doesn't fill the coefficient 1 of G[k], which is implicit. Needs k + list_mul_mem(k/2) cells in T. G == a is allowed. T must not overlap with anything else. */ void PolyFromRoots (listz_t G, listz_t a, unsigned int k, listz_t T, mpz_t n) { unsigned int l, m; ASSERT (T != G && T != a); ASSERT (k >= 1); if (k == 1) { /* we consider x + a[0], which mean we consider negated roots */ mpz_mod (G[0], a[0], n); return; } m = k / 2; /* m >= 1 */ l = k - m; /* l >= 1 */ PolyFromRoots (G, a, l, T, n); PolyFromRoots (G + l, a + l, m, T, n); list_mul (T, G, l, G + l, m, 1, T + k); list_mod (G, T, k, n); } /* puts in G[0]..G[k-1] the coefficients from (x+a[0])...(x+a[k-1]) Warning: doesn't fill the coefficient 1 of G[k], which is implicit. Needs k + list_mul_mem(k/2) cells in T. The product tree is stored in: G[0..k-1] (degree k) Tree[0][0..k-1] (degree k/2) Tree[1][0..k-1] (degree k/4), ..., Tree[lgk-1][0..k-1] (degree 1) (then we should have initially Tree[lgk-1] = a). The parameter dolvl signals that only level 'dolvl' of the tree should be computed (dolvl < 0 means all levels). Either Tree <> NULL and TreeFile == NULL, and we write the tree to memory, or Tree == NULL and TreeFile <> NULL, and we write the tree to disk. */ int PolyFromRoots_Tree (listz_t G, listz_t a, unsigned int k, listz_t T, int dolvl, mpz_t n, listz_t *Tree, FILE *TreeFile, unsigned int sh) { unsigned int l, m; listz_t H1, *NextTree; ASSERT (k >= 1); if (k == 1) { /* we consider x + a[0], which mean we consider negated roots */ mpz_mod (G[0], a[0], n); return 0; } if (Tree == NULL) /* -treefile case */ { H1 = G; NextTree = NULL; } else { H1 = Tree[0] + sh; NextTree = Tree + 1; } m = k / 2; l = k - m; if (dolvl != 0) /* either dolvl < 0 and we need to compute all levels, or dolvl > 0 and we need first to compute lower levels */ { PolyFromRoots_Tree (H1, a, l, T, dolvl - 1, n, NextTree, TreeFile, sh); PolyFromRoots_Tree (H1 + l, a + l, m, T, dolvl - 1, n, NextTree, TreeFile, sh + l); } if (dolvl <= 0) { /* Write this level to disk, if requested */ if (TreeFile != NULL) { if (list_out_raw (TreeFile, H1, l) == ECM_ERROR || list_out_raw (TreeFile, H1 + l, m) == ECM_ERROR) { outputf (OUTPUT_ERROR, "Error writing product tree of F\n"); return ECM_ERROR; } } list_mul (T, H1, l, H1 + l, m, 1, T + k); list_mod (G, T, k, n); } return 0; } /* puts in q[0..K-1] the quotient of x^(2K-2) by B where B = b[0]+b[1]*x+...+b[K-1]*x^(K-1) with b[K-1]=1. */ void PolyInvert (listz_t q, listz_t b, unsigned int K, listz_t t, mpz_t n) { if (K == 1) { mpz_set_ui (q[0], 1); return; } else { int k, l, po2, use_middle_product = 0; use_middle_product = 1; k = K / 2; l = K - k; for (po2 = K; (po2 & 1) == 0; po2 >>= 1); po2 = (po2 == 1 && Fermat != 0); /* first determine l most-significant coeffs of Q */ PolyInvert (q + k, b + k, l, t, n); /* Q1 = {q+k, l} */ /* now Q1 * B = x^(2K-2) + O(x^(2K-2-l)) = x^(2K-2) + O(x^(K+k-2)). We need the coefficients of degree K-1 to K+k-2 of Q1*B */ ASSERTD(list_check(q+k,l,n) && list_check(b,l,n)); if (po2 == 0 && use_middle_product) { TMulKS (t, k - 1, q + k, l - 1, b, K - 1, n, 0); list_neg (t, t, k, n); } else if (po2) { list_revert (q + k, l); /* This expects the leading monomials explicitly in q[2k-1] and b[k+l-1] */ F_mul_trans (t, q + k, b, K / 2, K, Fermat, t + k); list_revert (q + k, l); list_neg (t, t, k, n); } else { list_mult_n (t, q + k, b, l); /* t[0..2l-1] = Q1 * B0 */ list_neg (t, t + l - 1, k, n); if (k > 1) { list_mul (t + k, q + k, l - 1, b + l, k - 1, 1, t + k + K - 2); /* Q1 * B1 */ list_sub (t + 1, t + 1, t + k, k - 1); } } list_mod (t, t, k, n); /* high(1-B*Q1) */ ASSERTD(list_check(t,k,n) && list_check(q+l,k,n)); if (po2) F_mul (t + k, t, q + l, k, DEFAULT, Fermat, t + 3 * k); else list_mult_n (t + k, t, q + l, k); list_mod (q, t + 2 * k - 1, k, n); } } /* Returns in a[0]+a[1]*x+...+a[K-1]*x^(K-1) the remainder of the division of A = a[0]+a[1]*x+...+a[2K-2]*x^(2K-2) by B = b[0]+b[1]*x+...+b[K-1]*x^(K-1)+b[K]*x^K with b[K]=1 *explicit*. (We have A = Q*B + R with deg(Q)=K-2 and deg(R)=K-1.) Assumes invb[0]+invb[1]*x+...+invb[K-2]*x^(K-2) equals Quo(x^(2K-2), B). Assumes K >= 2. Requires 2K-1 + list_mul_mem(K) cells in t. Notations: R = r[0..K-1], A = a[0..2K-2], low(A) = a[0..K-1], high(A) = a[K..2K-2], Q = t[0..K-2] Return non-zero iff an error occurred. */ int PrerevertDivision (listz_t a, listz_t b, listz_t invb, unsigned int K, listz_t t, mpz_t n) { int po2, wrap; listz_t t2 = NULL; wrap = ks_wrapmul_m (K + 1, K + 1, n) <= 2 * K - 1 + list_mul_mem (K); /* Q <- high(high(A) * INVB) with a short product */ for (po2 = K; (po2 & 1) == 0; po2 >>= 1); po2 = (po2 == 1); if (Fermat && po2) { mpz_set_ui (a[2 * K - 1], 0); if (K <= 4 * Fermat) { F_mul (t, a + K, invb, K, DEFAULT, Fermat, t + 2 * K); /* Put Q in T, as we still need high(A) later on */ list_mod (t, t + K - 2, K, n); } else { F_mul (t, a + K, invb, K, DEFAULT, Fermat, t + 2 * K); list_mod (a + K, t + K - 2, K, n); } } else /* non-Fermat case */ { list_mul_high (t, a + K, invb, K - 1); /* the high part of A * INVB is now in {t+K-2, K-1} */ if (wrap) { t2 = init_list2 (K - 1, mpz_sizeinbase (n, 2)); ASSERT_ALWAYS(t2 != NULL); list_mod (t2, t + K - 2, K - 1, n); } else /* we can store in high(A) which is no longer needed */ list_mod (a + K, t + K - 2, K - 1, n); } /* the quotient Q = trunc(A / B) has degree K-2, i.e. K-1 terms */ /* T <- low(Q * B) with a short product */ mpz_set_ui (a[2 * K - 1], 0); if (Fermat && po2) { if (K <= 4 * Fermat) { /* Multiply without zero padding, result is (mod x^K - 1) */ F_mul (t + K, t, b, K, NOPAD, Fermat, t + 2 * K); /* Take the leading monomial x^K of B into account */ list_add (t, t + K, t, K); /* Subtract high(A) */ list_sub(t, t, a + K, K); } else F_mul (t, a + K, b, K, DEFAULT, Fermat, t + 2 * K); } else /* non-Fermat case */ { if (wrap) /* Q = {t2, K-1}, B = {b, K+1} We know that Q*B vanishes with the coefficients of degree K to 2K-2 of {A, 2K-1} */ { unsigned int m; m = ks_wrapmul (t, K + 1, b, K + 1, t2, K - 1, n); clear_list (t2, K - 1); /* coefficients of degree m..2K-2 wrap around, i.e. were added to 0..2K-2-m */ if (m < 2 * K - 1) /* otherwise product is exact */ list_sub (t, t, a + m, 2 * K - 1 - m); } else list_mult_n (t, a + K, b, K); } /* now {t, K} contains the low K terms from Q*B */ list_sub (a, a, t, K); list_mod (a, a, K, n); return 0; }