/* Implements algorithm polyeval and remainder tree using middle product. Copyright 2003, 2004, 2005, 2006, 2007, 2008, 2009 Laurent Fousse, Alexander Kruppa, Paul Zimmermann. This file is part of the ECM Library. The ECM Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The ECM Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the ECM Library; see the file COPYING.LIB. If not, see http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include /* for strlen */ #include "ecm-impl.h" #ifdef HAVE_UNISTD_H # include /* for unlink */ #endif #ifndef MAX #define MAX(a,b) (((a) > (b)) ? (a) : (b)) #endif /* #define DEBUG_TREEDATA */ extern unsigned int Fermat; #if defined(DEBUG) || defined(DEBUG_TREEDATA) void print_vect (listz_t t, unsigned int l) { unsigned int i; fprintf (ECM_STDOUT, "["); for (i = 0; i < l; i++) { mpz_out_str (ECM_STDOUT, 10, t[i]); if (i != l - 1) fprintf (ECM_STDOUT, ", "); else fprintf (ECM_STDOUT, "]"); } } #endif /* Computes TUpTree as described in ref[1]. k is the degree of the * polynomial at the root of the tree. sh is the shift we need to * apply to find the actual coefficients of the polynomial at the root * of the tree. */ void TUpTree (listz_t b, listz_t *Tree, unsigned int k, listz_t tmp, int dolvl, unsigned int sh, mpz_t n, FILE *TreeFile) { unsigned int m, l; m = k / 2; l = k - m; if (k == 1) return; #ifdef DEBUG fprintf (ECM_STDOUT, "In TupTree, k = %d.\n", k); fprintf (ECM_STDOUT, "b = "); print_vect (b, k); fprintf (ECM_STDOUT, "\nThe polynomials at that level are: "); print_vect (Tree[0] + sh, k); fprintf (ECM_STDOUT, "\n"); #endif if (dolvl == 0 || dolvl == -1) { if (TreeFile != NULL) { list_inp_raw (tmp + k, TreeFile, l); #ifdef DEBUG_TREEDATA printf ("Read from file: "); print_vect (tmp + k, l); #endif TMulGen (tmp + l, m - 1, tmp + k, l - 1, b, k - 1, tmp + k + l, n); list_inp_raw (tmp + k, TreeFile, m); #ifdef DEBUG_TREEDATA print_vect (tmp + k, m); printf ("\n"); #endif TMulGen (tmp, l - 1, tmp + k, m - 1, b, k - 1, tmp + k + m, n); } else { #ifdef DEBUG_TREEDATA printf ("Got from Tree: "); print_vect (Tree[0] + sh, l); print_vect (Tree[0] + sh + l, m); printf ("\n"); #endif TMulGen (tmp + l, m - 1, Tree[0] + sh, l - 1, b, k - 1, tmp + k, n); TMulGen (tmp, l - 1, Tree[0] + sh + l, m - 1, b, k - 1, tmp + k, n); } #if defined(DEBUG) || defined (DEBUG_TREEDATA) fprintf (ECM_STDOUT, "And the result at that level (before correction) is:"); print_vect (tmp, k); fprintf (ECM_STDOUT, "\n"); #endif /* GMP-ECM specific: leading coefficients in the product tree * are implicit ones, so we need some extra work here. */ list_add (tmp, tmp, b + m, l); list_add (tmp + l, tmp + l, b + l, m); list_mod (b, tmp, k, n); /* reduce both parts simultaneously */ #ifdef DEBUG fprintf (ECM_STDOUT, "And the result at this level is:"); print_vect (b, k); fprintf (ECM_STDOUT, "\n"); #endif } if (dolvl > 0 || dolvl == -1) { if (dolvl > 0) dolvl--; TUpTree (b, Tree + 1, l, tmp, dolvl, sh, n, TreeFile); TUpTree (b + l, Tree + 1, m, tmp, dolvl, sh + l, n, TreeFile); } } static unsigned int TUpTree_space (unsigned int k) { unsigned int m, l; unsigned int r1, r2; m = k / 2; l = k - m; if (k == 1) return 0; r1 = TMulGen_space (l - 1, m - 1, k - 1) + l; if (m != l) { r2 = TMulGen_space (m - 1, l - 1, k - 1) + k; r1 = MAX (r1, r2); } r2 = TUpTree_space (l); r1 = MAX (r1, r2); if (m != l) { r2 = TUpTree_space (m); r1 = MAX (r1, r2); } return r1; } /* This is the documentation of the (now removed) polyeval() function. Algorithm polyeval from section 3.7 of Peter Montgomery's dissertation. Input: G - an array of k elements of R, G[i], 0 <= i < k representing the coefficients of a polynomial G(x) of degree < k Tree - the product tree produced by PolyFromRoots Tree[0][0..k-1] (degree k/2) Tree[1][0..k-1] (degree k/4), ..., Tree[lgk-1][0..k-1] (degree 1) Output: the sequence of values of G(a[i]) are stored in G[i] for 0 <= i < k Remark: we need an auxiliary (k+1)-th cell G[k] in G. The memory used is M(k) = max(3*floor(k/2)+list_mul_mem(floor(k/2)), k+list_mul_mem(ceil(k/2)), floor(k/2) + M(ceil(k/2))). Since list_mul_mem(k) >= 2*k, the maximum is the 1st. */ /* Same as polyeval. Needs invF as extra argument. Return non-zero iff an error occurred. */ int polyeval_tellegen (listz_t b, unsigned int k, listz_t *Tree, listz_t tmp, unsigned int sizeT, listz_t invF, mpz_t n, char *TreeFilename) { unsigned int tupspace; unsigned int tkspace; int allocated = 0, r = 0; /* return value, 0 = no error */ listz_t T; ASSERT(Tree != NULL || TreeFilename != NULL); tupspace = TUpTree_space (k) + k; tkspace = 2 * k - 1 + list_mul_mem (k); tupspace = MAX (tupspace, tkspace); if (TreeFilename != NULL) tupspace += (k + 1) / 2; if (sizeT >= tupspace) T = tmp; else { outputf (OUTPUT_DEVVERBOSE, "polyeval_tellegen: allocating extra temp" " space, want %d but T has only %d\n", tupspace, sizeT); T = init_list (tupspace); if (T == NULL) return ECM_ERROR; allocated = 1; } #ifdef TELLEGEN_DEBUG fprintf (ECM_STDOUT, "In polyeval_tellegen, k = %d.\n", k); fprintf (ECM_STDOUT, "Required memory: %d.\n", TMulGen_space (k - 1, k - 1, k - 1)); #endif if (Fermat) { /* Schoenhage-Strassen can't do a half product faster than a full */ F_mul (T, invF, b, k, DEFAULT, Fermat, T + 2 * k); list_mod (T, T + k - 1, k, n); } else { /* need space 2k-1+list_mul_mem(k) in T */ list_mul_high (T, invF, b, k); list_mod (T, T + k - 1, k, n); } list_revert (T, k); if (TreeFilename != NULL) { unsigned int lgk, i; FILE *TreeFile; char *fullname = (char *) malloc (strlen (TreeFilename) + 1 + 2 + 1); ASSERT_ALWAYS(fullname != NULL); lgk = ceil_log2 (k); for (i = 0; i < lgk; i++) { sprintf (fullname, "%s.%d", TreeFilename, i); TreeFile = fopen (fullname, "rb"); if (TreeFile == NULL) { outputf (OUTPUT_ERROR, "Error opening file %s for product tree of F\n", fullname); r = ECM_ERROR; goto clear_T; } TUpTree (T, NULL, k, T + k, i, 0, n, TreeFile); fclose (TreeFile); unlink (fullname); } free (fullname); } else TUpTree (T, Tree, k, T + k, -1, 0, n, NULL); list_swap (b, T, k); /* more efficient than list_set, since T is not needed anymore */ clear_T: if (allocated) clear_list (T, tupspace); return r; }