/* mpn_perfect_power_p -- mpn perfect power detection. Contributed to the GNU project by Martin Boij. Copyright 2009, 2010, 2012 Free Software Foundation, Inc. This file is part of the GNU MP Library. The GNU MP Library is free software; you can redistribute it and/or modify it under the terms of either: * the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. or * the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. or both in parallel, as here. The GNU MP Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received copies of the GNU General Public License and the GNU Lesser General Public License along with the GNU MP Library. If not, see https://www.gnu.org/licenses/. */ #include "gmp.h" #include "gmp-impl.h" #include "longlong.h" #define SMALL 20 #define MEDIUM 100 /* Return non-zero if {np,nn} == {xp,xn} ^ k. Algorithm: For s = 1, 2, 4, ..., s_max, compute the s least significant limbs of {xp,xn}^k. Stop if they don't match the s least significant limbs of {np,nn}. FIXME: Low xn limbs can be expected to always match, if computed as a mod B^{xn} root. So instead of using mpn_powlo, compute an approximation of the most significant (normalized) limb of {xp,xn} ^ k (and an error bound), and compare to {np, nn}. Or use an even cruder approximation based on fix-point base 2 logarithm. */ static int pow_equals (mp_srcptr np, mp_size_t n, mp_srcptr xp,mp_size_t xn, mp_limb_t k, mp_bitcnt_t f, mp_ptr tp) { mp_limb_t *tp2; mp_bitcnt_t y, z; mp_size_t i, bn; int ans; mp_limb_t h, l; TMP_DECL; ASSERT (n > 1 || (n == 1 && np[0] > 1)); ASSERT (np[n - 1] > 0); ASSERT (xn > 0); if (xn == 1 && xp[0] == 1) return 0; z = 1 + (n >> 1); for (bn = 1; bn < z; bn <<= 1) { mpn_powlo (tp, xp, &k, 1, bn, tp + bn); if (mpn_cmp (tp, np, bn) != 0) return 0; } TMP_MARK; /* Final check. Estimate the size of {xp,xn}^k before computing the power with full precision. Optimization: It might pay off to make a more accurate estimation of the logarithm of {xp,xn}, rather than using the index of the MSB. */ MPN_SIZEINBASE_2EXP(y, xp, xn, 1); y -= 1; /* msb_index (xp, xn) */ umul_ppmm (h, l, k, y); h -= l == 0; l--; /* two-limb decrement */ z = f - 1; /* msb_index (np, n) */ if (h == 0 && l <= z) { mp_limb_t size; size = l + k; ASSERT_ALWAYS (size >= k); y = 2 + size / GMP_LIMB_BITS; tp2 = TMP_ALLOC_LIMBS (y); i = mpn_pow_1 (tp, xp, xn, k, tp2); if (i == n && mpn_cmp (tp, np, n) == 0) ans = 1; else ans = 0; } else { ans = 0; } TMP_FREE; return ans; } /* Return non-zero if N = {np,n} is a kth power. I = {ip,n} = N^(-1) mod B^n. */ static int is_kth_power (mp_ptr rp, mp_srcptr np, mp_limb_t k, mp_srcptr ip, mp_size_t n, mp_bitcnt_t f, mp_ptr tp) { mp_bitcnt_t b; mp_size_t rn, xn; ASSERT (n > 0); ASSERT ((k & 1) != 0 || k == 2); ASSERT ((np[0] & 1) != 0); if (k == 2) { b = (f + 1) >> 1; rn = 1 + b / GMP_LIMB_BITS; if (mpn_bsqrtinv (rp, ip, b, tp) != 0) { rp[rn - 1] &= (CNST_LIMB(1) << (b % GMP_LIMB_BITS)) - 1; xn = rn; MPN_NORMALIZE (rp, xn); if (pow_equals (np, n, rp, xn, k, f, tp) != 0) return 1; /* Check if (2^b - r)^2 == n */ mpn_neg (rp, rp, rn); rp[rn - 1] &= (CNST_LIMB(1) << (b % GMP_LIMB_BITS)) - 1; MPN_NORMALIZE (rp, rn); if (pow_equals (np, n, rp, rn, k, f, tp) != 0) return 1; } } else { b = 1 + (f - 1) / k; rn = 1 + (b - 1) / GMP_LIMB_BITS; mpn_brootinv (rp, ip, rn, k, tp); if ((b % GMP_LIMB_BITS) != 0) rp[rn - 1] &= (CNST_LIMB(1) << (b % GMP_LIMB_BITS)) - 1; MPN_NORMALIZE (rp, rn); if (pow_equals (np, n, rp, rn, k, f, tp) != 0) return 1; } MPN_ZERO (rp, rn); /* Untrash rp */ return 0; } static int perfpow (mp_srcptr np, mp_size_t n, mp_limb_t ub, mp_limb_t g, mp_bitcnt_t f, int neg) { mp_ptr ip, tp, rp; mp_limb_t k; int ans; mp_bitcnt_t b; gmp_primesieve_t ps; TMP_DECL; ASSERT (n > 0); ASSERT ((np[0] & 1) != 0); ASSERT (ub > 0); TMP_MARK; gmp_init_primesieve (&ps); b = (f + 3) >> 1; ip = TMP_ALLOC_LIMBS (n); rp = TMP_ALLOC_LIMBS (n); tp = TMP_ALLOC_LIMBS (5 * n); /* FIXME */ MPN_ZERO (rp, n); /* FIXME: It seems the inverse in ninv is needed only to get non-inverted roots. I.e., is_kth_power computes n^{1/2} as (n^{-1})^{-1/2} and similarly for nth roots. It should be more efficient to compute n^{1/2} as n * n^{-1/2}, with a mullo instead of a binvert. And we can do something similar for kth roots if we switch to an iteration converging to n^{1/k - 1}, and we can then eliminate this binvert call. */ mpn_binvert (ip, np, 1 + (b - 1) / GMP_LIMB_BITS, tp); if (b % GMP_LIMB_BITS) ip[(b - 1) / GMP_LIMB_BITS] &= (CNST_LIMB(1) << (b % GMP_LIMB_BITS)) - 1; if (neg) gmp_nextprime (&ps); ans = 0; if (g > 0) { ub = MIN (ub, g + 1); while ((k = gmp_nextprime (&ps)) < ub) { if ((g % k) == 0) { if (is_kth_power (rp, np, k, ip, n, f, tp) != 0) { ans = 1; goto ret; } } } } else { while ((k = gmp_nextprime (&ps)) < ub) { if (is_kth_power (rp, np, k, ip, n, f, tp) != 0) { ans = 1; goto ret; } } } ret: TMP_FREE; return ans; } static const unsigned short nrtrial[] = { 100, 500, 1000 }; /* Table of (log_{p_i} 2) values, where p_i is the (nrtrial[i] + 1)'th prime number. */ static const double logs[] = { 0.1099457228193620, 0.0847016403115322, 0.0772048195144415 }; int mpn_perfect_power_p (mp_srcptr np, mp_size_t n) { mp_size_t ncn, s, pn, xn; mp_limb_t *nc, factor, g; mp_limb_t exp, *prev, *next, d, l, r, c, *tp, cry; mp_bitcnt_t twos, count; int ans, where, neg, trial; TMP_DECL; nc = (mp_ptr) np; neg = 0; if (n < 0) { neg = 1; n = -n; } if (n == 0 || (n == 1 && np[0] == 1)) return 1; TMP_MARK; g = 0; ncn = n; twos = mpn_scan1 (np, 0); if (twos > 0) { if (twos == 1) { ans = 0; goto ret; } s = twos / GMP_LIMB_BITS; if (s + 1 == n && POW2_P (np[s])) { ans = ! (neg && POW2_P (twos)); goto ret; } count = twos % GMP_LIMB_BITS; ncn = n - s; nc = TMP_ALLOC_LIMBS (ncn); if (count > 0) { mpn_rshift (nc, np + s, ncn, count); ncn -= (nc[ncn - 1] == 0); } else { MPN_COPY (nc, np + s, ncn); } g = twos; } if (ncn <= SMALL) trial = 0; else if (ncn <= MEDIUM) trial = 1; else trial = 2; where = 0; factor = mpn_trialdiv (nc, ncn, nrtrial[trial], &where); if (factor != 0) { if (twos == 0) { nc = TMP_ALLOC_LIMBS (ncn); MPN_COPY (nc, np, ncn); } /* Remove factors found by trialdiv. Optimization: Perhaps better to use the strategy in mpz_remove (). */ prev = TMP_ALLOC_LIMBS (ncn + 2); next = TMP_ALLOC_LIMBS (ncn + 2); tp = TMP_ALLOC_LIMBS (4 * ncn); do { binvert_limb (d, factor); prev[0] = d; pn = 1; exp = 1; while (2 * pn - 1 <= ncn) { mpn_sqr (next, prev, pn); xn = 2 * pn; xn -= (next[xn - 1] == 0); if (mpn_divisible_p (nc, ncn, next, xn) == 0) break; exp <<= 1; pn = xn; MP_PTR_SWAP (next, prev); } /* Binary search for the exponent */ l = exp + 1; r = 2 * exp - 1; while (l <= r) { c = (l + r) >> 1; if (c - exp > 1) { xn = mpn_pow_1 (tp, &d, 1, c - exp, next); if (pn + xn - 1 > ncn) { r = c - 1; continue; } mpn_mul (next, prev, pn, tp, xn); xn += pn; xn -= (next[xn - 1] == 0); } else { cry = mpn_mul_1 (next, prev, pn, d); next[pn] = cry; xn = pn + (cry != 0); } if (mpn_divisible_p (nc, ncn, next, xn) == 0) { r = c - 1; } else { exp = c; l = c + 1; MP_PTR_SWAP (next, prev); pn = xn; } } if (g == 0) g = exp; else g = mpn_gcd_1 (&g, 1, exp); if (g == 1) { ans = 0; goto ret; } mpn_divexact (next, nc, ncn, prev, pn); ncn = ncn - pn; ncn += next[ncn] != 0; MPN_COPY (nc, next, ncn); if (ncn == 1 && nc[0] == 1) { ans = ! (neg && POW2_P (g)); goto ret; } factor = mpn_trialdiv (nc, ncn, nrtrial[trial], &where); } while (factor != 0); } MPN_SIZEINBASE_2EXP(count, nc, ncn, 1); /* log (nc) + 1 */ d = (mp_limb_t) (count * logs[trial] + 1e-9) + 1; ans = perfpow (nc, ncn, d, g, count, neg); ret: TMP_FREE; return ans; }