/* mpz_millerrabin(n,reps) -- An implementation of the probabilistic primality test found in Knuth's Seminumerical Algorithms book. If the function mpz_millerrabin() returns 0 then n is not prime. If it returns 1, then n is 'probably' prime. The probability of a false positive is (1/4)**reps, where reps is the number of internal passes of the probabilistic algorithm. Knuth indicates that 25 passes are reasonable. THE FUNCTIONS IN THIS FILE ARE FOR INTERNAL USE ONLY. THEY'RE ALMOST CERTAIN TO BE SUBJECT TO INCOMPATIBLE CHANGES OR DISAPPEAR COMPLETELY IN FUTURE GNU MP RELEASES. Copyright 1991, 1993, 1994, 1996-2002, 2005 Free Software Foundation, Inc. Contributed by John Amanatides. This file is part of the GNU MP Library. The GNU MP Library is free software; you can redistribute it and/or modify it under the terms of either: * the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. or * the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. or both in parallel, as here. The GNU MP Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received copies of the GNU General Public License and the GNU Lesser General Public License along with the GNU MP Library. If not, see https://www.gnu.org/licenses/. */ #include "gmp.h" #include "gmp-impl.h" static int millerrabin (mpz_srcptr, mpz_srcptr, mpz_ptr, mpz_ptr, mpz_srcptr, unsigned long int); int mpz_millerrabin (mpz_srcptr n, int reps) { int r; mpz_t nm1, nm3, x, y, q; unsigned long int k; gmp_randstate_t rstate; int is_prime; TMP_DECL; TMP_MARK; MPZ_TMP_INIT (nm1, SIZ (n) + 1); mpz_sub_ui (nm1, n, 1L); MPZ_TMP_INIT (x, SIZ (n) + 1); MPZ_TMP_INIT (y, 2 * SIZ (n)); /* mpz_powm_ui needs excessive memory!!! */ /* Perform a Fermat test. */ mpz_set_ui (x, 210L); mpz_powm (y, x, nm1, n); if (mpz_cmp_ui (y, 1L) != 0) { TMP_FREE; return 0; } MPZ_TMP_INIT (q, SIZ (n)); /* Find q and k, where q is odd and n = 1 + 2**k * q. */ k = mpz_scan1 (nm1, 0L); mpz_tdiv_q_2exp (q, nm1, k); /* n-3 */ MPZ_TMP_INIT (nm3, SIZ (n) + 1); mpz_sub_ui (nm3, n, 3L); ASSERT (mpz_cmp_ui (nm3, 1L) >= 0); gmp_randinit_default (rstate); is_prime = 1; for (r = 0; r < reps && is_prime; r++) { /* 2 to n-2 inclusive, don't want 1, 0 or -1 */ mpz_urandomm (x, rstate, nm3); mpz_add_ui (x, x, 2L); is_prime = millerrabin (n, nm1, x, y, q, k); } gmp_randclear (rstate); TMP_FREE; return is_prime; } static int millerrabin (mpz_srcptr n, mpz_srcptr nm1, mpz_ptr x, mpz_ptr y, mpz_srcptr q, unsigned long int k) { unsigned long int i; mpz_powm (y, x, q, n); if (mpz_cmp_ui (y, 1L) == 0 || mpz_cmp (y, nm1) == 0) return 1; for (i = 1; i < k; i++) { mpz_powm_ui (y, y, 2L, n); if (mpz_cmp (y, nm1) == 0) return 1; if (mpz_cmp_ui (y, 1L) == 0) return 0; } return 0; }