// Copyright 2023 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. syntax = "proto3"; package google.cloud.aiplatform.v1beta1; import "google/protobuf/timestamp.proto"; option csharp_namespace = "Google.Cloud.AIPlatform.V1Beta1"; option go_package = "cloud.google.com/go/aiplatform/apiv1beta1/aiplatformpb;aiplatformpb"; option java_multiple_files = true; option java_outer_classname = "FeatureMonitoringStatsProto"; option java_package = "com.google.cloud.aiplatform.v1beta1"; option php_namespace = "Google\\Cloud\\AIPlatform\\V1beta1"; option ruby_package = "Google::Cloud::AIPlatform::V1beta1"; // Stats and Anomaly generated at specific timestamp for specific Feature. // The start_time and end_time are used to define the time range of the dataset // that current stats belongs to, e.g. prediction traffic is bucketed into // prediction datasets by time window. If the Dataset is not defined by time // window, start_time = end_time. Timestamp of the stats and anomalies always // refers to end_time. Raw stats and anomalies are stored in stats_uri or // anomaly_uri in the tensorflow defined protos. Field data_stats contains // almost identical information with the raw stats in Vertex AI // defined proto, for UI to display. message FeatureStatsAnomaly { // Feature importance score, only populated when cross-feature monitoring is // enabled. For now only used to represent feature attribution score within // range [0, 1] for // [ModelDeploymentMonitoringObjectiveType.FEATURE_ATTRIBUTION_SKEW][google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringObjectiveType.FEATURE_ATTRIBUTION_SKEW] // and // [ModelDeploymentMonitoringObjectiveType.FEATURE_ATTRIBUTION_DRIFT][google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringObjectiveType.FEATURE_ATTRIBUTION_DRIFT]. double score = 1; // Path of the stats file for current feature values in Cloud Storage bucket. // Format: gs:////stats. // Example: gs://monitoring_bucket/feature_name/stats. // Stats are stored as binary format with Protobuf message // [tensorflow.metadata.v0.FeatureNameStatistics](https://github.com/tensorflow/metadata/blob/master/tensorflow_metadata/proto/v0/statistics.proto). string stats_uri = 3; // Path of the anomaly file for current feature values in Cloud Storage // bucket. // Format: gs:////anomalies. // Example: gs://monitoring_bucket/feature_name/anomalies. // Stats are stored as binary format with Protobuf message // Anoamlies are stored as binary format with Protobuf message // [tensorflow.metadata.v0.AnomalyInfo] // (https://github.com/tensorflow/metadata/blob/master/tensorflow_metadata/proto/v0/anomalies.proto). string anomaly_uri = 4; // Deviation from the current stats to baseline stats. // 1. For categorical feature, the distribution distance is calculated by // L-inifinity norm. // 2. For numerical feature, the distribution distance is calculated by // Jensen–Shannon divergence. double distribution_deviation = 5; // This is the threshold used when detecting anomalies. // The threshold can be changed by user, so this one might be different from // [ThresholdConfig.value][google.cloud.aiplatform.v1beta1.ThresholdConfig.value]. double anomaly_detection_threshold = 9; // The start timestamp of window where stats were generated. // For objectives where time window doesn't make sense (e.g. Featurestore // Snapshot Monitoring), start_time is only used to indicate the monitoring // intervals, so it always equals to (end_time - monitoring_interval). google.protobuf.Timestamp start_time = 7; // The end timestamp of window where stats were generated. // For objectives where time window doesn't make sense (e.g. Featurestore // Snapshot Monitoring), end_time indicates the timestamp of the data used to // generate stats (e.g. timestamp we take snapshots for feature values). google.protobuf.Timestamp end_time = 8; }