// Copyright 2020 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. syntax = "proto3"; package google.cloud.automl.v1beta1; option go_package = "cloud.google.com/go/automl/apiv1beta1/automlpb;automlpb"; option java_multiple_files = true; option java_package = "com.google.cloud.automl.v1beta1"; option php_namespace = "Google\\Cloud\\AutoMl\\V1beta1"; option ruby_package = "Google::Cloud::AutoML::V1beta1"; // Input configuration for ImportData Action. // // The format of input depends on dataset_metadata the Dataset into which // the import is happening has. As input source the // [gcs_source][google.cloud.automl.v1beta1.InputConfig.gcs_source] // is expected, unless specified otherwise. Additionally any input .CSV file // by itself must be 100MB or smaller, unless specified otherwise. // If an "example" file (that is, image, video etc.) with identical content // (even if it had different GCS_FILE_PATH) is mentioned multiple times, then // its label, bounding boxes etc. are appended. The same file should be always // provided with the same ML_USE and GCS_FILE_PATH, if it is not, then // these values are nondeterministically selected from the given ones. // // The formats are represented in EBNF with commas being literal and with // non-terminal symbols defined near the end of this comment. The formats are: // // * For Image Classification: // CSV file(s) with each line in format: // ML_USE,GCS_FILE_PATH,LABEL,LABEL,... // GCS_FILE_PATH leads to image of up to 30MB in size. Supported // extensions: .JPEG, .GIF, .PNG, .WEBP, .BMP, .TIFF, .ICO // For MULTICLASS classification type, at most one LABEL is allowed // per image. If an image has not yet been labeled, then it should be // mentioned just once with no LABEL. // Some sample rows: // TRAIN,gs://folder/image1.jpg,daisy // TEST,gs://folder/image2.jpg,dandelion,tulip,rose // UNASSIGNED,gs://folder/image3.jpg,daisy // UNASSIGNED,gs://folder/image4.jpg // // * For Image Object Detection: // CSV file(s) with each line in format: // ML_USE,GCS_FILE_PATH,(LABEL,BOUNDING_BOX | ,,,,,,,) // GCS_FILE_PATH leads to image of up to 30MB in size. Supported // extensions: .JPEG, .GIF, .PNG. // Each image is assumed to be exhaustively labeled. The minimum // allowed BOUNDING_BOX edge length is 0.01, and no more than 500 // BOUNDING_BOX-es per image are allowed (one BOUNDING_BOX is defined // per line). If an image has not yet been labeled, then it should be // mentioned just once with no LABEL and the ",,,,,,," in place of the // BOUNDING_BOX. For images which are known to not contain any // bounding boxes, they should be labelled explictly as // "NEGATIVE_IMAGE", followed by ",,,,,,," in place of the // BOUNDING_BOX. // Sample rows: // TRAIN,gs://folder/image1.png,car,0.1,0.1,,,0.3,0.3,, // TRAIN,gs://folder/image1.png,bike,.7,.6,,,.8,.9,, // UNASSIGNED,gs://folder/im2.png,car,0.1,0.1,0.2,0.1,0.2,0.3,0.1,0.3 // TEST,gs://folder/im3.png,,,,,,,,, // TRAIN,gs://folder/im4.png,NEGATIVE_IMAGE,,,,,,,,, // // * For Video Classification: // CSV file(s) with each line in format: // ML_USE,GCS_FILE_PATH // where ML_USE VALIDATE value should not be used. The GCS_FILE_PATH // should lead to another .csv file which describes examples that have // given ML_USE, using the following row format: // GCS_FILE_PATH,(LABEL,TIME_SEGMENT_START,TIME_SEGMENT_END | ,,) // Here GCS_FILE_PATH leads to a video of up to 50GB in size and up // to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI. // TIME_SEGMENT_START and TIME_SEGMENT_END must be within the // length of the video, and end has to be after the start. Any segment // of a video which has one or more labels on it, is considered a // hard negative for all other labels. Any segment with no labels on // it is considered to be unknown. If a whole video is unknown, then // it shuold be mentioned just once with ",," in place of LABEL, // TIME_SEGMENT_START,TIME_SEGMENT_END. // Sample top level CSV file: // TRAIN,gs://folder/train_videos.csv // TEST,gs://folder/test_videos.csv // UNASSIGNED,gs://folder/other_videos.csv // Sample rows of a CSV file for a particular ML_USE: // gs://folder/video1.avi,car,120,180.000021 // gs://folder/video1.avi,bike,150,180.000021 // gs://folder/vid2.avi,car,0,60.5 // gs://folder/vid3.avi,,, // // * For Video Object Tracking: // CSV file(s) with each line in format: // ML_USE,GCS_FILE_PATH // where ML_USE VALIDATE value should not be used. The GCS_FILE_PATH // should lead to another .csv file which describes examples that have // given ML_USE, using one of the following row format: // GCS_FILE_PATH,LABEL,[INSTANCE_ID],TIMESTAMP,BOUNDING_BOX // or // GCS_FILE_PATH,,,,,,,,,, // Here GCS_FILE_PATH leads to a video of up to 50GB in size and up // to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI. // Providing INSTANCE_IDs can help to obtain a better model. When // a specific labeled entity leaves the video frame, and shows up // afterwards it is not required, albeit preferable, that the same // INSTANCE_ID is given to it. // TIMESTAMP must be within the length of the video, the // BOUNDING_BOX is assumed to be drawn on the closest video's frame // to the TIMESTAMP. Any mentioned by the TIMESTAMP frame is expected // to be exhaustively labeled and no more than 500 BOUNDING_BOX-es per // frame are allowed. If a whole video is unknown, then it should be // mentioned just once with ",,,,,,,,,," in place of LABEL, // [INSTANCE_ID],TIMESTAMP,BOUNDING_BOX. // Sample top level CSV file: // TRAIN,gs://folder/train_videos.csv // TEST,gs://folder/test_videos.csv // UNASSIGNED,gs://folder/other_videos.csv // Seven sample rows of a CSV file for a particular ML_USE: // gs://folder/video1.avi,car,1,12.10,0.8,0.8,0.9,0.8,0.9,0.9,0.8,0.9 // gs://folder/video1.avi,car,1,12.90,0.4,0.8,0.5,0.8,0.5,0.9,0.4,0.9 // gs://folder/video1.avi,car,2,12.10,.4,.2,.5,.2,.5,.3,.4,.3 // gs://folder/video1.avi,car,2,12.90,.8,.2,,,.9,.3,, // gs://folder/video1.avi,bike,,12.50,.45,.45,,,.55,.55,, // gs://folder/video2.avi,car,1,0,.1,.9,,,.9,.1,, // gs://folder/video2.avi,,,,,,,,,,, // * For Text Extraction: // CSV file(s) with each line in format: // ML_USE,GCS_FILE_PATH // GCS_FILE_PATH leads to a .JSONL (that is, JSON Lines) file which // either imports text in-line or as documents. Any given // .JSONL file must be 100MB or smaller. // The in-line .JSONL file contains, per line, a proto that wraps a // TextSnippet proto (in json representation) followed by one or more // AnnotationPayload protos (called annotations), which have // display_name and text_extraction detail populated. The given text // is expected to be annotated exhaustively, for example, if you look // for animals and text contains "dolphin" that is not labeled, then // "dolphin" is assumed to not be an animal. Any given text snippet // content must be 10KB or smaller, and also be UTF-8 NFC encoded // (ASCII already is). // The document .JSONL file contains, per line, a proto that wraps a // Document proto. The Document proto must have either document_text // or input_config set. In document_text case, the Document proto may // also contain the spatial information of the document, including // layout, document dimension and page number. In input_config case, // only PDF documents are supported now, and each document may be up // to 2MB large. Currently, annotations on documents cannot be // specified at import. // Three sample CSV rows: // TRAIN,gs://folder/file1.jsonl // VALIDATE,gs://folder/file2.jsonl // TEST,gs://folder/file3.jsonl // Sample in-line JSON Lines file for entity extraction (presented here // with artificial line breaks, but the only actual line break is // denoted by \n).: // { // "document": { // "document_text": {"content": "dog cat"} // "layout": [ // { // "text_segment": { // "start_offset": 0, // "end_offset": 3, // }, // "page_number": 1, // "bounding_poly": { // "normalized_vertices": [ // {"x": 0.1, "y": 0.1}, // {"x": 0.1, "y": 0.3}, // {"x": 0.3, "y": 0.3}, // {"x": 0.3, "y": 0.1}, // ], // }, // "text_segment_type": TOKEN, // }, // { // "text_segment": { // "start_offset": 4, // "end_offset": 7, // }, // "page_number": 1, // "bounding_poly": { // "normalized_vertices": [ // {"x": 0.4, "y": 0.1}, // {"x": 0.4, "y": 0.3}, // {"x": 0.8, "y": 0.3}, // {"x": 0.8, "y": 0.1}, // ], // }, // "text_segment_type": TOKEN, // } // // ], // "document_dimensions": { // "width": 8.27, // "height": 11.69, // "unit": INCH, // } // "page_count": 1, // }, // "annotations": [ // { // "display_name": "animal", // "text_extraction": {"text_segment": {"start_offset": 0, // "end_offset": 3}} // }, // { // "display_name": "animal", // "text_extraction": {"text_segment": {"start_offset": 4, // "end_offset": 7}} // } // ], // }\n // { // "text_snippet": { // "content": "This dog is good." // }, // "annotations": [ // { // "display_name": "animal", // "text_extraction": { // "text_segment": {"start_offset": 5, "end_offset": 8} // } // } // ] // } // Sample document JSON Lines file (presented here with artificial line // breaks, but the only actual line break is denoted by \n).: // { // "document": { // "input_config": { // "gcs_source": { "input_uris": [ "gs://folder/document1.pdf" ] // } // } // } // }\n // { // "document": { // "input_config": { // "gcs_source": { "input_uris": [ "gs://folder/document2.pdf" ] // } // } // } // } // // * For Text Classification: // CSV file(s) with each line in format: // ML_USE,(TEXT_SNIPPET | GCS_FILE_PATH),LABEL,LABEL,... // TEXT_SNIPPET and GCS_FILE_PATH are distinguished by a pattern. If // the column content is a valid gcs file path, i.e. prefixed by // "gs://", it will be treated as a GCS_FILE_PATH, else if the content // is enclosed within double quotes (""), it is // treated as a TEXT_SNIPPET. In the GCS_FILE_PATH case, the path // must lead to a .txt file with UTF-8 encoding, for example, // "gs://folder/content.txt", and the content in it is extracted // as a text snippet. In TEXT_SNIPPET case, the column content // excluding quotes is treated as to be imported text snippet. In // both cases, the text snippet/file size must be within 128kB. // Maximum 100 unique labels are allowed per CSV row. // Sample rows: // TRAIN,"They have bad food and very rude",RudeService,BadFood // TRAIN,gs://folder/content.txt,SlowService // TEST,"Typically always bad service there.",RudeService // VALIDATE,"Stomach ache to go.",BadFood // // * For Text Sentiment: // CSV file(s) with each line in format: // ML_USE,(TEXT_SNIPPET | GCS_FILE_PATH),SENTIMENT // TEXT_SNIPPET and GCS_FILE_PATH are distinguished by a pattern. If // the column content is a valid gcs file path, that is, prefixed by // "gs://", it is treated as a GCS_FILE_PATH, otherwise it is treated // as a TEXT_SNIPPET. In the GCS_FILE_PATH case, the path // must lead to a .txt file with UTF-8 encoding, for example, // "gs://folder/content.txt", and the content in it is extracted // as a text snippet. In TEXT_SNIPPET case, the column content itself // is treated as to be imported text snippet. In both cases, the // text snippet must be up to 500 characters long. // Sample rows: // TRAIN,"@freewrytin this is way too good for your product",2 // TRAIN,"I need this product so bad",3 // TEST,"Thank you for this product.",4 // VALIDATE,gs://folder/content.txt,2 // // * For Tables: // Either // [gcs_source][google.cloud.automl.v1beta1.InputConfig.gcs_source] or // // [bigquery_source][google.cloud.automl.v1beta1.InputConfig.bigquery_source] // can be used. All inputs is concatenated into a single // // [primary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_name] // For gcs_source: // CSV file(s), where the first row of the first file is the header, // containing unique column names. If the first row of a subsequent // file is the same as the header, then it is also treated as a // header. All other rows contain values for the corresponding // columns. // Each .CSV file by itself must be 10GB or smaller, and their total // size must be 100GB or smaller. // First three sample rows of a CSV file: // "Id","First Name","Last Name","Dob","Addresses" // // "1","John","Doe","1968-01-22","[{"status":"current","address":"123_First_Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},{"status":"previous","address":"456_Main_Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}]" // // "2","Jane","Doe","1980-10-16","[{"status":"current","address":"789_Any_Avenue","city":"Albany","state":"NY","zip":"33333","numberOfYears":"2"},{"status":"previous","address":"321_Main_Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}]} // For bigquery_source: // An URI of a BigQuery table. The user data size of the BigQuery // table must be 100GB or smaller. // An imported table must have between 2 and 1,000 columns, inclusive, // and between 1000 and 100,000,000 rows, inclusive. There are at most 5 // import data running in parallel. // Definitions: // ML_USE = "TRAIN" | "VALIDATE" | "TEST" | "UNASSIGNED" // Describes how the given example (file) should be used for model // training. "UNASSIGNED" can be used when user has no preference. // GCS_FILE_PATH = A path to file on GCS, e.g. "gs://folder/image1.png". // LABEL = A display name of an object on an image, video etc., e.g. "dog". // Must be up to 32 characters long and can consist only of ASCII // Latin letters A-Z and a-z, underscores(_), and ASCII digits 0-9. // For each label an AnnotationSpec is created which display_name // becomes the label; AnnotationSpecs are given back in predictions. // INSTANCE_ID = A positive integer that identifies a specific instance of a // labeled entity on an example. Used e.g. to track two cars on // a video while being able to tell apart which one is which. // BOUNDING_BOX = VERTEX,VERTEX,VERTEX,VERTEX | VERTEX,,,VERTEX,, // A rectangle parallel to the frame of the example (image, // video). If 4 vertices are given they are connected by edges // in the order provided, if 2 are given they are recognized // as diagonally opposite vertices of the rectangle. // VERTEX = COORDINATE,COORDINATE // First coordinate is horizontal (x), the second is vertical (y). // COORDINATE = A float in 0 to 1 range, relative to total length of // image or video in given dimension. For fractions the // leading non-decimal 0 can be omitted (i.e. 0.3 = .3). // Point 0,0 is in top left. // TIME_SEGMENT_START = TIME_OFFSET // Expresses a beginning, inclusive, of a time segment // within an example that has a time dimension // (e.g. video). // TIME_SEGMENT_END = TIME_OFFSET // Expresses an end, exclusive, of a time segment within // an example that has a time dimension (e.g. video). // TIME_OFFSET = A number of seconds as measured from the start of an // example (e.g. video). Fractions are allowed, up to a // microsecond precision. "inf" is allowed, and it means the end // of the example. // TEXT_SNIPPET = A content of a text snippet, UTF-8 encoded, enclosed within // double quotes (""). // SENTIMENT = An integer between 0 and // Dataset.text_sentiment_dataset_metadata.sentiment_max // (inclusive). Describes the ordinal of the sentiment - higher // value means a more positive sentiment. All the values are // completely relative, i.e. neither 0 needs to mean a negative or // neutral sentiment nor sentiment_max needs to mean a positive one // - it is just required that 0 is the least positive sentiment // in the data, and sentiment_max is the most positive one. // The SENTIMENT shouldn't be confused with "score" or "magnitude" // from the previous Natural Language Sentiment Analysis API. // All SENTIMENT values between 0 and sentiment_max must be // represented in the imported data. On prediction the same 0 to // sentiment_max range will be used. The difference between // neighboring sentiment values needs not to be uniform, e.g. 1 and // 2 may be similar whereas the difference between 2 and 3 may be // huge. // // Errors: // If any of the provided CSV files can't be parsed or if more than certain // percent of CSV rows cannot be processed then the operation fails and // nothing is imported. Regardless of overall success or failure the per-row // failures, up to a certain count cap, is listed in // Operation.metadata.partial_failures. // message InputConfig { // The source of the input. oneof source { // The Google Cloud Storage location for the input content. // In ImportData, the gcs_source points to a csv with structure described in // the comment. GcsSource gcs_source = 1; // The BigQuery location for the input content. BigQuerySource bigquery_source = 3; } // Additional domain-specific parameters describing the semantic of the // imported data, any string must be up to 25000 // characters long. // // * For Tables: // `schema_inference_version` - (integer) Required. The version of the // algorithm that should be used for the initial inference of the // schema (columns' DataTypes) of the table the data is being imported // into. Allowed values: "1". map params = 2; } // Input configuration for BatchPredict Action. // // The format of input depends on the ML problem of the model used for // prediction. As input source the // [gcs_source][google.cloud.automl.v1beta1.InputConfig.gcs_source] // is expected, unless specified otherwise. // // The formats are represented in EBNF with commas being literal and with // non-terminal symbols defined near the end of this comment. The formats // are: // // * For Image Classification: // CSV file(s) with each line having just a single column: // GCS_FILE_PATH // which leads to image of up to 30MB in size. Supported // extensions: .JPEG, .GIF, .PNG. This path is treated as the ID in // the Batch predict output. // Three sample rows: // gs://folder/image1.jpeg // gs://folder/image2.gif // gs://folder/image3.png // // * For Image Object Detection: // CSV file(s) with each line having just a single column: // GCS_FILE_PATH // which leads to image of up to 30MB in size. Supported // extensions: .JPEG, .GIF, .PNG. This path is treated as the ID in // the Batch predict output. // Three sample rows: // gs://folder/image1.jpeg // gs://folder/image2.gif // gs://folder/image3.png // * For Video Classification: // CSV file(s) with each line in format: // GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END // GCS_FILE_PATH leads to video of up to 50GB in size and up to 3h // duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI. // TIME_SEGMENT_START and TIME_SEGMENT_END must be within the // length of the video, and end has to be after the start. // Three sample rows: // gs://folder/video1.mp4,10,40 // gs://folder/video1.mp4,20,60 // gs://folder/vid2.mov,0,inf // // * For Video Object Tracking: // CSV file(s) with each line in format: // GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END // GCS_FILE_PATH leads to video of up to 50GB in size and up to 3h // duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI. // TIME_SEGMENT_START and TIME_SEGMENT_END must be within the // length of the video, and end has to be after the start. // Three sample rows: // gs://folder/video1.mp4,10,240 // gs://folder/video1.mp4,300,360 // gs://folder/vid2.mov,0,inf // * For Text Classification: // CSV file(s) with each line having just a single column: // GCS_FILE_PATH | TEXT_SNIPPET // Any given text file can have size upto 128kB. // Any given text snippet content must have 60,000 characters or less. // Three sample rows: // gs://folder/text1.txt // "Some text content to predict" // gs://folder/text3.pdf // Supported file extensions: .txt, .pdf // // * For Text Sentiment: // CSV file(s) with each line having just a single column: // GCS_FILE_PATH | TEXT_SNIPPET // Any given text file can have size upto 128kB. // Any given text snippet content must have 500 characters or less. // Three sample rows: // gs://folder/text1.txt // "Some text content to predict" // gs://folder/text3.pdf // Supported file extensions: .txt, .pdf // // * For Text Extraction // .JSONL (i.e. JSON Lines) file(s) which either provide text in-line or // as documents (for a single BatchPredict call only one of the these // formats may be used). // The in-line .JSONL file(s) contain per line a proto that // wraps a temporary user-assigned TextSnippet ID (string up to 2000 // characters long) called "id", a TextSnippet proto (in // json representation) and zero or more TextFeature protos. Any given // text snippet content must have 30,000 characters or less, and also // be UTF-8 NFC encoded (ASCII already is). The IDs provided should be // unique. // The document .JSONL file(s) contain, per line, a proto that wraps a // Document proto with input_config set. Only PDF documents are // supported now, and each document must be up to 2MB large. // Any given .JSONL file must be 100MB or smaller, and no more than 20 // files may be given. // Sample in-line JSON Lines file (presented here with artificial line // breaks, but the only actual line break is denoted by \n): // { // "id": "my_first_id", // "text_snippet": { "content": "dog car cat"}, // "text_features": [ // { // "text_segment": {"start_offset": 4, "end_offset": 6}, // "structural_type": PARAGRAPH, // "bounding_poly": { // "normalized_vertices": [ // {"x": 0.1, "y": 0.1}, // {"x": 0.1, "y": 0.3}, // {"x": 0.3, "y": 0.3}, // {"x": 0.3, "y": 0.1}, // ] // }, // } // ], // }\n // { // "id": "2", // "text_snippet": { // "content": "An elaborate content", // "mime_type": "text/plain" // } // } // Sample document JSON Lines file (presented here with artificial line // breaks, but the only actual line break is denoted by \n).: // { // "document": { // "input_config": { // "gcs_source": { "input_uris": [ "gs://folder/document1.pdf" ] // } // } // } // }\n // { // "document": { // "input_config": { // "gcs_source": { "input_uris": [ "gs://folder/document2.pdf" ] // } // } // } // } // // * For Tables: // Either // [gcs_source][google.cloud.automl.v1beta1.InputConfig.gcs_source] or // // [bigquery_source][google.cloud.automl.v1beta1.InputConfig.bigquery_source]. // GCS case: // CSV file(s), each by itself 10GB or smaller and total size must be // 100GB or smaller, where first file must have a header containing // column names. If the first row of a subsequent file is the same as // the header, then it is also treated as a header. All other rows // contain values for the corresponding columns. // The column names must contain the model's // // [input_feature_column_specs'][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs] // // [display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name] // (order doesn't matter). The columns corresponding to the model's // input feature column specs must contain values compatible with the // column spec's data types. Prediction on all the rows, i.e. the CSV // lines, will be attempted. For FORECASTING // // [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]: // all columns having // // [TIME_SERIES_AVAILABLE_PAST_ONLY][google.cloud.automl.v1beta1.ColumnSpec.ForecastingMetadata.ColumnType] // type will be ignored. // First three sample rows of a CSV file: // "First Name","Last Name","Dob","Addresses" // // "John","Doe","1968-01-22","[{"status":"current","address":"123_First_Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},{"status":"previous","address":"456_Main_Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}]" // // "Jane","Doe","1980-10-16","[{"status":"current","address":"789_Any_Avenue","city":"Albany","state":"NY","zip":"33333","numberOfYears":"2"},{"status":"previous","address":"321_Main_Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}]} // BigQuery case: // An URI of a BigQuery table. The user data size of the BigQuery // table must be 100GB or smaller. // The column names must contain the model's // // [input_feature_column_specs'][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs] // // [display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name] // (order doesn't matter). The columns corresponding to the model's // input feature column specs must contain values compatible with the // column spec's data types. Prediction on all the rows of the table // will be attempted. For FORECASTING // // [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]: // all columns having // // [TIME_SERIES_AVAILABLE_PAST_ONLY][google.cloud.automl.v1beta1.ColumnSpec.ForecastingMetadata.ColumnType] // type will be ignored. // // Definitions: // GCS_FILE_PATH = A path to file on GCS, e.g. "gs://folder/video.avi". // TEXT_SNIPPET = A content of a text snippet, UTF-8 encoded, enclosed within // double quotes ("") // TIME_SEGMENT_START = TIME_OFFSET // Expresses a beginning, inclusive, of a time segment // within an // example that has a time dimension (e.g. video). // TIME_SEGMENT_END = TIME_OFFSET // Expresses an end, exclusive, of a time segment within // an example that has a time dimension (e.g. video). // TIME_OFFSET = A number of seconds as measured from the start of an // example (e.g. video). Fractions are allowed, up to a // microsecond precision. "inf" is allowed and it means the end // of the example. // // Errors: // If any of the provided CSV files can't be parsed or if more than certain // percent of CSV rows cannot be processed then the operation fails and // prediction does not happen. Regardless of overall success or failure the // per-row failures, up to a certain count cap, will be listed in // Operation.metadata.partial_failures. message BatchPredictInputConfig { // Required. The source of the input. oneof source { // The Google Cloud Storage location for the input content. GcsSource gcs_source = 1; // The BigQuery location for the input content. BigQuerySource bigquery_source = 2; } } // Input configuration of a [Document][google.cloud.automl.v1beta1.Document]. message DocumentInputConfig { // The Google Cloud Storage location of the document file. Only a single path // should be given. // Max supported size: 512MB. // Supported extensions: .PDF. GcsSource gcs_source = 1; } // * For Translation: // CSV file `translation.csv`, with each line in format: // ML_USE,GCS_FILE_PATH // GCS_FILE_PATH leads to a .TSV file which describes examples that have // given ML_USE, using the following row format per line: // TEXT_SNIPPET (in source language) \t TEXT_SNIPPET (in target // language) // // * For Tables: // Output depends on whether the dataset was imported from GCS or // BigQuery. // GCS case: // // [gcs_destination][google.cloud.automl.v1beta1.OutputConfig.gcs_destination] // must be set. Exported are CSV file(s) `tables_1.csv`, // `tables_2.csv`,...,`tables_N.csv` with each having as header line // the table's column names, and all other lines contain values for // the header columns. // BigQuery case: // // [bigquery_destination][google.cloud.automl.v1beta1.OutputConfig.bigquery_destination] // pointing to a BigQuery project must be set. In the given project a // new dataset will be created with name // // `export_data__` // where will be made // BigQuery-dataset-name compatible (e.g. most special characters will // become underscores), and timestamp will be in // YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601" format. In that // dataset a new table called `primary_table` will be created, and // filled with precisely the same data as this obtained on import. message OutputConfig { // Required. The destination of the output. oneof destination { // The Google Cloud Storage location where the output is to be written to. // For Image Object Detection, Text Extraction, Video Classification and // Tables, in the given directory a new directory will be created with name: // export_data-- where // timestamp is in YYYY-MM-DDThh:mm:ss.sssZ ISO-8601 format. All export // output will be written into that directory. GcsDestination gcs_destination = 1; // The BigQuery location where the output is to be written to. BigQueryDestination bigquery_destination = 2; } } // Output configuration for BatchPredict Action. // // As destination the // // [gcs_destination][google.cloud.automl.v1beta1.BatchPredictOutputConfig.gcs_destination] // must be set unless specified otherwise for a domain. If gcs_destination is // set then in the given directory a new directory is created. Its name // will be // "prediction--", // where timestamp is in YYYY-MM-DDThh:mm:ss.sssZ ISO-8601 format. The contents // of it depends on the ML problem the predictions are made for. // // * For Image Classification: // In the created directory files `image_classification_1.jsonl`, // `image_classification_2.jsonl`,...,`image_classification_N.jsonl` // will be created, where N may be 1, and depends on the // total number of the successfully predicted images and annotations. // A single image will be listed only once with all its annotations, // and its annotations will never be split across files. // Each .JSONL file will contain, per line, a JSON representation of a // proto that wraps image's "ID" : "" followed by a list of // zero or more AnnotationPayload protos (called annotations), which // have classification detail populated. // If prediction for any image failed (partially or completely), then an // additional `errors_1.jsonl`, `errors_2.jsonl`,..., `errors_N.jsonl` // files will be created (N depends on total number of failed // predictions). These files will have a JSON representation of a proto // that wraps the same "ID" : "" but here followed by // exactly one // // [`google.rpc.Status`](https: // //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto) // containing only `code` and `message`fields. // // * For Image Object Detection: // In the created directory files `image_object_detection_1.jsonl`, // `image_object_detection_2.jsonl`,...,`image_object_detection_N.jsonl` // will be created, where N may be 1, and depends on the // total number of the successfully predicted images and annotations. // Each .JSONL file will contain, per line, a JSON representation of a // proto that wraps image's "ID" : "" followed by a list of // zero or more AnnotationPayload protos (called annotations), which // have image_object_detection detail populated. A single image will // be listed only once with all its annotations, and its annotations // will never be split across files. // If prediction for any image failed (partially or completely), then // additional `errors_1.jsonl`, `errors_2.jsonl`,..., `errors_N.jsonl` // files will be created (N depends on total number of failed // predictions). These files will have a JSON representation of a proto // that wraps the same "ID" : "" but here followed by // exactly one // // [`google.rpc.Status`](https: // //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto) // containing only `code` and `message`fields. // * For Video Classification: // In the created directory a video_classification.csv file, and a .JSON // file per each video classification requested in the input (i.e. each // line in given CSV(s)), will be created. // // The format of video_classification.csv is: // // GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS // where: // GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1 // the prediction input lines (i.e. video_classification.csv has // precisely the same number of lines as the prediction input had.) // JSON_FILE_NAME = Name of .JSON file in the output directory, which // contains prediction responses for the video time segment. // STATUS = "OK" if prediction completed successfully, or an error code // with message otherwise. If STATUS is not "OK" then the .JSON file // for that line may not exist or be empty. // // Each .JSON file, assuming STATUS is "OK", will contain a list of // AnnotationPayload protos in JSON format, which are the predictions // for the video time segment the file is assigned to in the // video_classification.csv. All AnnotationPayload protos will have // video_classification field set, and will be sorted by // video_classification.type field (note that the returned types are // governed by `classifaction_types` parameter in // [PredictService.BatchPredictRequest.params][]). // // * For Video Object Tracking: // In the created directory a video_object_tracking.csv file will be // created, and multiple files video_object_trackinng_1.json, // video_object_trackinng_2.json,..., video_object_trackinng_N.json, // where N is the number of requests in the input (i.e. the number of // lines in given CSV(s)). // // The format of video_object_tracking.csv is: // // GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS // where: // GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1 // the prediction input lines (i.e. video_object_tracking.csv has // precisely the same number of lines as the prediction input had.) // JSON_FILE_NAME = Name of .JSON file in the output directory, which // contains prediction responses for the video time segment. // STATUS = "OK" if prediction completed successfully, or an error // code with message otherwise. If STATUS is not "OK" then the .JSON // file for that line may not exist or be empty. // // Each .JSON file, assuming STATUS is "OK", will contain a list of // AnnotationPayload protos in JSON format, which are the predictions // for each frame of the video time segment the file is assigned to in // video_object_tracking.csv. All AnnotationPayload protos will have // video_object_tracking field set. // * For Text Classification: // In the created directory files `text_classification_1.jsonl`, // `text_classification_2.jsonl`,...,`text_classification_N.jsonl` // will be created, where N may be 1, and depends on the // total number of inputs and annotations found. // // Each .JSONL file will contain, per line, a JSON representation of a // proto that wraps input text snippet or input text file and a list of // zero or more AnnotationPayload protos (called annotations), which // have classification detail populated. A single text snippet or file // will be listed only once with all its annotations, and its // annotations will never be split across files. // // If prediction for any text snippet or file failed (partially or // completely), then additional `errors_1.jsonl`, `errors_2.jsonl`,..., // `errors_N.jsonl` files will be created (N depends on total number of // failed predictions). These files will have a JSON representation of a // proto that wraps input text snippet or input text file followed by // exactly one // // [`google.rpc.Status`](https: // //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto) // containing only `code` and `message`. // // * For Text Sentiment: // In the created directory files `text_sentiment_1.jsonl`, // `text_sentiment_2.jsonl`,...,`text_sentiment_N.jsonl` // will be created, where N may be 1, and depends on the // total number of inputs and annotations found. // // Each .JSONL file will contain, per line, a JSON representation of a // proto that wraps input text snippet or input text file and a list of // zero or more AnnotationPayload protos (called annotations), which // have text_sentiment detail populated. A single text snippet or file // will be listed only once with all its annotations, and its // annotations will never be split across files. // // If prediction for any text snippet or file failed (partially or // completely), then additional `errors_1.jsonl`, `errors_2.jsonl`,..., // `errors_N.jsonl` files will be created (N depends on total number of // failed predictions). These files will have a JSON representation of a // proto that wraps input text snippet or input text file followed by // exactly one // // [`google.rpc.Status`](https: // //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto) // containing only `code` and `message`. // // * For Text Extraction: // In the created directory files `text_extraction_1.jsonl`, // `text_extraction_2.jsonl`,...,`text_extraction_N.jsonl` // will be created, where N may be 1, and depends on the // total number of inputs and annotations found. // The contents of these .JSONL file(s) depend on whether the input // used inline text, or documents. // If input was inline, then each .JSONL file will contain, per line, // a JSON representation of a proto that wraps given in request text // snippet's "id" (if specified), followed by input text snippet, // and a list of zero or more // AnnotationPayload protos (called annotations), which have // text_extraction detail populated. A single text snippet will be // listed only once with all its annotations, and its annotations will // never be split across files. // If input used documents, then each .JSONL file will contain, per // line, a JSON representation of a proto that wraps given in request // document proto, followed by its OCR-ed representation in the form // of a text snippet, finally followed by a list of zero or more // AnnotationPayload protos (called annotations), which have // text_extraction detail populated and refer, via their indices, to // the OCR-ed text snippet. A single document (and its text snippet) // will be listed only once with all its annotations, and its // annotations will never be split across files. // If prediction for any text snippet failed (partially or completely), // then additional `errors_1.jsonl`, `errors_2.jsonl`,..., // `errors_N.jsonl` files will be created (N depends on total number of // failed predictions). These files will have a JSON representation of a // proto that wraps either the "id" : "" (in case of inline) // or the document proto (in case of document) but here followed by // exactly one // // [`google.rpc.Status`](https: // //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto) // containing only `code` and `message`. // // * For Tables: // Output depends on whether // // [gcs_destination][google.cloud.automl.v1beta1.BatchPredictOutputConfig.gcs_destination] // or // // [bigquery_destination][google.cloud.automl.v1beta1.BatchPredictOutputConfig.bigquery_destination] // is set (either is allowed). // GCS case: // In the created directory files `tables_1.csv`, `tables_2.csv`,..., // `tables_N.csv` will be created, where N may be 1, and depends on // the total number of the successfully predicted rows. // For all CLASSIFICATION // // [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]: // Each .csv file will contain a header, listing all columns' // // [display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name] // given on input followed by M target column names in the format of // // "<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] // // [display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>__score" where M is the number of distinct target values, // i.e. number of distinct values in the target column of the table // used to train the model. Subsequent lines will contain the // respective values of successfully predicted rows, with the last, // i.e. the target, columns having the corresponding prediction // [scores][google.cloud.automl.v1beta1.TablesAnnotation.score]. // For REGRESSION and FORECASTING // // [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]: // Each .csv file will contain a header, listing all columns' // [display_name-s][google.cloud.automl.v1beta1.display_name] given // on input followed by the predicted target column with name in the // format of // // "predicted_<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] // // [display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>" // Subsequent lines will contain the respective values of // successfully predicted rows, with the last, i.e. the target, // column having the predicted target value. // If prediction for any rows failed, then an additional // `errors_1.csv`, `errors_2.csv`,..., `errors_N.csv` will be // created (N depends on total number of failed rows). These files // will have analogous format as `tables_*.csv`, but always with a // single target column having // // [`google.rpc.Status`](https: // //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto) // represented as a JSON string, and containing only `code` and // `message`. // BigQuery case: // // [bigquery_destination][google.cloud.automl.v1beta1.OutputConfig.bigquery_destination] // pointing to a BigQuery project must be set. In the given project a // new dataset will be created with name // `prediction__` // where will be made // BigQuery-dataset-name compatible (e.g. most special characters will // become underscores), and timestamp will be in // YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601" format. In the dataset // two tables will be created, `predictions`, and `errors`. // The `predictions` table's column names will be the input columns' // // [display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name] // followed by the target column with name in the format of // // "predicted_<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] // // [display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>" // The input feature columns will contain the respective values of // successfully predicted rows, with the target column having an // ARRAY of // // [AnnotationPayloads][google.cloud.automl.v1beta1.AnnotationPayload], // represented as STRUCT-s, containing // [TablesAnnotation][google.cloud.automl.v1beta1.TablesAnnotation]. // The `errors` table contains rows for which the prediction has // failed, it has analogous input columns while the target column name // is in the format of // // "errors_<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] // // [display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>", // and as a value has // // [`google.rpc.Status`](https: // //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto) // represented as a STRUCT, and containing only `code` and `message`. message BatchPredictOutputConfig { // Required. The destination of the output. oneof destination { // The Google Cloud Storage location of the directory where the output is to // be written to. GcsDestination gcs_destination = 1; // The BigQuery location where the output is to be written to. BigQueryDestination bigquery_destination = 2; } } // Output configuration for ModelExport Action. message ModelExportOutputConfig { // Required. The destination of the output. oneof destination { // The Google Cloud Storage location where the model is to be written to. // This location may only be set for the following model formats: // "tflite", "edgetpu_tflite", "tf_saved_model", "tf_js", "core_ml". // // Under the directory given as the destination a new one with name // "model-export--", // where timestamp is in YYYY-MM-DDThh:mm:ss.sssZ ISO-8601 format, // will be created. Inside the model and any of its supporting files // will be written. GcsDestination gcs_destination = 1; // The GCR location where model image is to be pushed to. This location // may only be set for the following model formats: // "docker". // // The model image will be created under the given URI. GcrDestination gcr_destination = 3; } // The format in which the model must be exported. The available, and default, // formats depend on the problem and model type (if given problem and type // combination doesn't have a format listed, it means its models are not // exportable): // // * For Image Classification mobile-low-latency-1, mobile-versatile-1, // mobile-high-accuracy-1: // "tflite" (default), "edgetpu_tflite", "tf_saved_model", "tf_js", // "docker". // // * For Image Classification mobile-core-ml-low-latency-1, // mobile-core-ml-versatile-1, mobile-core-ml-high-accuracy-1: // "core_ml" (default). // // * For Image Object Detection mobile-low-latency-1, mobile-versatile-1, // mobile-high-accuracy-1: // "tflite", "tf_saved_model", "tf_js". // // * For Video Classification cloud, // "tf_saved_model". // // * For Video Object Tracking cloud, // "tf_saved_model". // // * For Video Object Tracking mobile-versatile-1: // "tflite", "edgetpu_tflite", "tf_saved_model", "docker". // // * For Video Object Tracking mobile-coral-versatile-1: // "tflite", "edgetpu_tflite", "docker". // // * For Video Object Tracking mobile-coral-low-latency-1: // "tflite", "edgetpu_tflite", "docker". // // * For Video Object Tracking mobile-jetson-versatile-1: // "tf_saved_model", "docker". // // * For Tables: // "docker". // // Formats description: // // * tflite - Used for Android mobile devices. // * edgetpu_tflite - Used for [Edge TPU](https://cloud.google.com/edge-tpu/) // devices. // * tf_saved_model - A tensorflow model in SavedModel format. // * tf_js - A [TensorFlow.js](https://www.tensorflow.org/js) model that can // be used in the browser and in Node.js using JavaScript. // * docker - Used for Docker containers. Use the params field to customize // the container. The container is verified to work correctly on // ubuntu 16.04 operating system. See more at // [containers // // quickstart](https: // //cloud.google.com/vision/automl/docs/containers-gcs-quickstart) // * core_ml - Used for iOS mobile devices. string model_format = 4; // Additional model-type and format specific parameters describing the // requirements for the to be exported model files, any string must be up to // 25000 characters long. // // * For `docker` format: // `cpu_architecture` - (string) "x86_64" (default). // `gpu_architecture` - (string) "none" (default), "nvidia". map params = 2; } // Output configuration for ExportEvaluatedExamples Action. Note that this call // is available only for 30 days since the moment the model was evaluated. // The output depends on the domain, as follows (note that only examples from // the TEST set are exported): // // * For Tables: // // [bigquery_destination][google.cloud.automl.v1beta1.OutputConfig.bigquery_destination] // pointing to a BigQuery project must be set. In the given project a // new dataset will be created with name // // `export_evaluated_examples__` // where will be made BigQuery-dataset-name // compatible (e.g. most special characters will become underscores), // and timestamp will be in YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601" // format. In the dataset an `evaluated_examples` table will be // created. It will have all the same columns as the // // [primary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id] // of the // [dataset][google.cloud.automl.v1beta1.Model.dataset_id] from which // the model was created, as they were at the moment of model's // evaluation (this includes the target column with its ground // truth), followed by a column called "predicted_". That // last column will contain the model's prediction result for each // respective row, given as ARRAY of // [AnnotationPayloads][google.cloud.automl.v1beta1.AnnotationPayload], // represented as STRUCT-s, containing // [TablesAnnotation][google.cloud.automl.v1beta1.TablesAnnotation]. message ExportEvaluatedExamplesOutputConfig { // Required. The destination of the output. oneof destination { // The BigQuery location where the output is to be written to. BigQueryDestination bigquery_destination = 2; } } // The Google Cloud Storage location for the input content. message GcsSource { // Required. Google Cloud Storage URIs to input files, up to 2000 characters // long. Accepted forms: // * Full object path, e.g. gs://bucket/directory/object.csv repeated string input_uris = 1; } // The BigQuery location for the input content. message BigQuerySource { // Required. BigQuery URI to a table, up to 2000 characters long. // Accepted forms: // * BigQuery path e.g. bq://projectId.bqDatasetId.bqTableId string input_uri = 1; } // The Google Cloud Storage location where the output is to be written to. message GcsDestination { // Required. Google Cloud Storage URI to output directory, up to 2000 // characters long. // Accepted forms: // * Prefix path: gs://bucket/directory // The requesting user must have write permission to the bucket. // The directory is created if it doesn't exist. string output_uri_prefix = 1; } // The BigQuery location for the output content. message BigQueryDestination { // Required. BigQuery URI to a project, up to 2000 characters long. // Accepted forms: // * BigQuery path e.g. bq://projectId string output_uri = 1; } // The GCR location where the image must be pushed to. message GcrDestination { // Required. Google Contained Registry URI of the new image, up to 2000 // characters long. See // // https: // //cloud.google.com/container-registry/do // // cs/pushing-and-pulling#pushing_an_image_to_a_registry // Accepted forms: // * [HOSTNAME]/[PROJECT-ID]/[IMAGE] // * [HOSTNAME]/[PROJECT-ID]/[IMAGE]:[TAG] // // The requesting user must have permission to push images the project. string output_uri = 1; }