// Copyright 2020 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. syntax = "proto3"; package google.cloud.automl.v1beta1; import "google/api/annotations.proto"; import "google/api/client.proto"; import "google/api/field_behavior.proto"; import "google/api/resource.proto"; import "google/cloud/automl/v1beta1/annotation_payload.proto"; import "google/cloud/automl/v1beta1/data_items.proto"; import "google/cloud/automl/v1beta1/io.proto"; import "google/cloud/automl/v1beta1/operations.proto"; import "google/longrunning/operations.proto"; option go_package = "cloud.google.com/go/automl/apiv1beta1/automlpb;automlpb"; option java_multiple_files = true; option java_outer_classname = "PredictionServiceProto"; option java_package = "com.google.cloud.automl.v1beta1"; option php_namespace = "Google\\Cloud\\AutoMl\\V1beta1"; option ruby_package = "Google::Cloud::AutoML::V1beta1"; // AutoML Prediction API. // // On any input that is documented to expect a string parameter in // snake_case or kebab-case, either of those cases is accepted. service PredictionService { option (google.api.default_host) = "automl.googleapis.com"; option (google.api.oauth_scopes) = "https://www.googleapis.com/auth/cloud-platform"; // Perform an online prediction. The prediction result will be directly // returned in the response. // Available for following ML problems, and their expected request payloads: // * Image Classification - Image in .JPEG, .GIF or .PNG format, image_bytes // up to 30MB. // * Image Object Detection - Image in .JPEG, .GIF or .PNG format, image_bytes // up to 30MB. // * Text Classification - TextSnippet, content up to 60,000 characters, // UTF-8 encoded. // * Text Extraction - TextSnippet, content up to 30,000 characters, // UTF-8 NFC encoded. // * Translation - TextSnippet, content up to 25,000 characters, UTF-8 // encoded. // * Tables - Row, with column values matching the columns of the model, // up to 5MB. Not available for FORECASTING // // [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]. // * Text Sentiment - TextSnippet, content up 500 characters, UTF-8 // encoded. rpc Predict(PredictRequest) returns (PredictResponse) { option (google.api.http) = { post: "/v1beta1/{name=projects/*/locations/*/models/*}:predict" body: "*" }; option (google.api.method_signature) = "name,payload,params"; } // Perform a batch prediction. Unlike the online [Predict][google.cloud.automl.v1beta1.PredictionService.Predict], batch // prediction result won't be immediately available in the response. Instead, // a long running operation object is returned. User can poll the operation // result via [GetOperation][google.longrunning.Operations.GetOperation] // method. Once the operation is done, [BatchPredictResult][google.cloud.automl.v1beta1.BatchPredictResult] is returned in // the [response][google.longrunning.Operation.response] field. // Available for following ML problems: // * Image Classification // * Image Object Detection // * Video Classification // * Video Object Tracking * Text Extraction // * Tables rpc BatchPredict(BatchPredictRequest) returns (google.longrunning.Operation) { option (google.api.http) = { post: "/v1beta1/{name=projects/*/locations/*/models/*}:batchPredict" body: "*" }; option (google.api.method_signature) = "name,input_config,output_config,params"; option (google.longrunning.operation_info) = { response_type: "BatchPredictResult" metadata_type: "OperationMetadata" }; } } // Request message for [PredictionService.Predict][google.cloud.automl.v1beta1.PredictionService.Predict]. message PredictRequest { // Required. Name of the model requested to serve the prediction. string name = 1 [ (google.api.field_behavior) = REQUIRED, (google.api.resource_reference) = { type: "automl.googleapis.com/Model" } ]; // Required. Payload to perform a prediction on. The payload must match the // problem type that the model was trained to solve. ExamplePayload payload = 2 [(google.api.field_behavior) = REQUIRED]; // Additional domain-specific parameters, any string must be up to 25000 // characters long. // // * For Image Classification: // // `score_threshold` - (float) A value from 0.0 to 1.0. When the model // makes predictions for an image, it will only produce results that have // at least this confidence score. The default is 0.5. // // * For Image Object Detection: // `score_threshold` - (float) When Model detects objects on the image, // it will only produce bounding boxes which have at least this // confidence score. Value in 0 to 1 range, default is 0.5. // `max_bounding_box_count` - (int64) No more than this number of bounding // boxes will be returned in the response. Default is 100, the // requested value may be limited by server. // * For Tables: // feature_importance - (boolean) Whether feature importance // should be populated in the returned TablesAnnotation. // The default is false. map params = 3; } // Response message for [PredictionService.Predict][google.cloud.automl.v1beta1.PredictionService.Predict]. message PredictResponse { // Prediction result. // Translation and Text Sentiment will return precisely one payload. repeated AnnotationPayload payload = 1; // The preprocessed example that AutoML actually makes prediction on. // Empty if AutoML does not preprocess the input example. // * For Text Extraction: // If the input is a .pdf file, the OCR'ed text will be provided in // [document_text][google.cloud.automl.v1beta1.Document.document_text]. ExamplePayload preprocessed_input = 3; // Additional domain-specific prediction response metadata. // // * For Image Object Detection: // `max_bounding_box_count` - (int64) At most that many bounding boxes per // image could have been returned. // // * For Text Sentiment: // `sentiment_score` - (float, deprecated) A value between -1 and 1, // -1 maps to least positive sentiment, while 1 maps to the most positive // one and the higher the score, the more positive the sentiment in the // document is. Yet these values are relative to the training data, so // e.g. if all data was positive then -1 will be also positive (though // the least). // The sentiment_score shouldn't be confused with "score" or "magnitude" // from the previous Natural Language Sentiment Analysis API. map metadata = 2; } // Request message for [PredictionService.BatchPredict][google.cloud.automl.v1beta1.PredictionService.BatchPredict]. message BatchPredictRequest { // Required. Name of the model requested to serve the batch prediction. string name = 1 [ (google.api.field_behavior) = REQUIRED, (google.api.resource_reference) = { type: "automl.googleapis.com/Model" } ]; // Required. The input configuration for batch prediction. BatchPredictInputConfig input_config = 3 [(google.api.field_behavior) = REQUIRED]; // Required. The Configuration specifying where output predictions should // be written. BatchPredictOutputConfig output_config = 4 [(google.api.field_behavior) = REQUIRED]; // Required. Additional domain-specific parameters for the predictions, any string must // be up to 25000 characters long. // // * For Text Classification: // // `score_threshold` - (float) A value from 0.0 to 1.0. When the model // makes predictions for a text snippet, it will only produce results // that have at least this confidence score. The default is 0.5. // // * For Image Classification: // // `score_threshold` - (float) A value from 0.0 to 1.0. When the model // makes predictions for an image, it will only produce results that // have at least this confidence score. The default is 0.5. // // * For Image Object Detection: // // `score_threshold` - (float) When Model detects objects on the image, // it will only produce bounding boxes which have at least this // confidence score. Value in 0 to 1 range, default is 0.5. // `max_bounding_box_count` - (int64) No more than this number of bounding // boxes will be produced per image. Default is 100, the // requested value may be limited by server. // // * For Video Classification : // // `score_threshold` - (float) A value from 0.0 to 1.0. When the model // makes predictions for a video, it will only produce results that // have at least this confidence score. The default is 0.5. // `segment_classification` - (boolean) Set to true to request // segment-level classification. AutoML Video Intelligence returns // labels and their confidence scores for the entire segment of the // video that user specified in the request configuration. // The default is "true". // `shot_classification` - (boolean) Set to true to request shot-level // classification. AutoML Video Intelligence determines the boundaries // for each camera shot in the entire segment of the video that user // specified in the request configuration. AutoML Video Intelligence // then returns labels and their confidence scores for each detected // shot, along with the start and end time of the shot. // WARNING: Model evaluation is not done for this classification type, // the quality of it depends on training data, but there are no metrics // provided to describe that quality. The default is "false". // `1s_interval_classification` - (boolean) Set to true to request // classification for a video at one-second intervals. AutoML Video // Intelligence returns labels and their confidence scores for each // second of the entire segment of the video that user specified in the // request configuration. // WARNING: Model evaluation is not done for this classification // type, the quality of it depends on training data, but there are no // metrics provided to describe that quality. The default is // "false". // // * For Tables: // // feature_importance - (boolean) Whether feature importance // should be populated in the returned TablesAnnotations. The // default is false. // // * For Video Object Tracking: // // `score_threshold` - (float) When Model detects objects on video frames, // it will only produce bounding boxes which have at least this // confidence score. Value in 0 to 1 range, default is 0.5. // `max_bounding_box_count` - (int64) No more than this number of bounding // boxes will be returned per frame. Default is 100, the requested // value may be limited by server. // `min_bounding_box_size` - (float) Only bounding boxes with shortest edge // at least that long as a relative value of video frame size will be // returned. Value in 0 to 1 range. Default is 0. map params = 5 [(google.api.field_behavior) = REQUIRED]; } // Result of the Batch Predict. This message is returned in // [response][google.longrunning.Operation.response] of the operation returned // by the [PredictionService.BatchPredict][google.cloud.automl.v1beta1.PredictionService.BatchPredict]. message BatchPredictResult { // Additional domain-specific prediction response metadata. // // * For Image Object Detection: // `max_bounding_box_count` - (int64) At most that many bounding boxes per // image could have been returned. // // * For Video Object Tracking: // `max_bounding_box_count` - (int64) At most that many bounding boxes per // frame could have been returned. map metadata = 1; }