// Copyright 2024 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. syntax = "proto3"; package google.cloud.aiplatform.v1beta1; import "google/protobuf/struct.proto"; import "google/protobuf/timestamp.proto"; option csharp_namespace = "Google.Cloud.AIPlatform.V1Beta1"; option go_package = "cloud.google.com/go/aiplatform/apiv1beta1/aiplatformpb;aiplatformpb"; option java_multiple_files = true; option java_outer_classname = "ModelMonitoringStatsProto"; option java_package = "com.google.cloud.aiplatform.v1beta1"; option php_namespace = "Google\\Cloud\\AIPlatform\\V1beta1"; option ruby_package = "Google::Cloud::AIPlatform::V1beta1"; // Represents the collection of statistics for a metric. message ModelMonitoringStats { oneof stats { // Generated tabular statistics. ModelMonitoringTabularStats tabular_stats = 1; } } // Represents a single statistics data point. message ModelMonitoringStatsDataPoint { // Typed value of the statistics. message TypedValue { // Summary statistics for a population of values. message DistributionDataValue { // Predictive monitoring drift distribution in // `tensorflow.metadata.v0.DatasetFeatureStatistics` format. google.protobuf.Value distribution = 1; // Distribution distance deviation from the current dataset's statistics // to baseline dataset's statistics. // * For categorical feature, the distribution distance is calculated // by L-inifinity norm or Jensen–Shannon divergence. // * For numerical feature, the distribution distance is calculated by // Jensen–Shannon divergence. double distribution_deviation = 2; } // The typed value. oneof value { // Double. double double_value = 1; // Distribution. DistributionDataValue distribution_value = 2; } } // Statistics from current dataset. TypedValue current_stats = 1; // Statistics from baseline dataset. TypedValue baseline_stats = 2; // Threshold value. double threshold_value = 3; // Indicate if the statistics has anomaly. bool has_anomaly = 4; // Model monitoring job resource name. string model_monitoring_job = 5; // Schedule resource name. string schedule = 6; // Statistics create time. google.protobuf.Timestamp create_time = 7; // Algorithm used to calculated the metrics, eg: jensen_shannon_divergence, // l_infinity. string algorithm = 8; } // A collection of data points that describes the time-varying values of a // tabular metric. message ModelMonitoringTabularStats { // The stats name. string stats_name = 1; // One of the supported monitoring objectives: // `raw-feature-drift` // `prediction-output-drift` // `feature-attribution` string objective_type = 2; // The data points of this time series. When listing time series, points are // returned in reverse time order. repeated ModelMonitoringStatsDataPoint data_points = 3; } // Filter for searching ModelMonitoringStats. message SearchModelMonitoringStatsFilter { // Tabular statistics filter. message TabularStatsFilter { // If not specified, will return all the stats_names. string stats_name = 1; // One of the supported monitoring objectives: // `raw-feature-drift` // `prediction-output-drift` // `feature-attribution` string objective_type = 2; // From a particular monitoring job. string model_monitoring_job = 3; // From a particular monitoring schedule. string model_monitoring_schedule = 4; // Specify the algorithm type used for distance calculation, eg: // jensen_shannon_divergence, l_infinity. string algorithm = 5; } oneof filter { // Tabular statistics filter. TabularStatsFilter tabular_stats_filter = 1; } }