// -*- Mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include #include #include #include #include "run_benchmark.h" static void bench_fastpath_throughput(long iterations, uintptr_t param) { size_t sz = 32; for (; iterations>0; iterations--) { void *p = malloc(sz); if (!p) { abort(); } free(p); // this makes next iteration use different free list. So // subsequent iterations may actually overlap in time. sz = ((sz * 8191) & 511) + 16; } } static void bench_fastpath_dependent(long iterations, uintptr_t param) { size_t sz = 32; for (; iterations>0; iterations--) { void *p = malloc(sz); if (!p) { abort(); } free(p); // this makes next iteration depend on current iteration. But this // iteration's free may still overlap with next iteration's malloc sz = ((sz | reinterpret_cast(p)) & 511) + 16; } } static void bench_fastpath_simple(long iterations, uintptr_t param) { size_t sz = static_cast(param); for (; iterations>0; iterations--) { void *p = malloc(sz); if (!p) { abort(); } free(p); // next iteration will use same free list as this iteration. So it // should be prevent next iterations malloc to go too far before // free done. But using same size will make free "too fast" since // we'll hit size class cache. } } #ifdef __GNUC__ #define HAVE_SIZED_FREE_OPTION extern "C" void tc_free_sized(void *ptr, size_t size) __attribute__((weak)); extern "C" void *tc_memalign(size_t align, size_t size) __attribute__((weak)); static bool is_sized_free_available(void) { return tc_free_sized != NULL; } static bool is_memalign_available(void) { return tc_memalign != NULL; } static void bench_fastpath_simple_sized(long iterations, uintptr_t param) { size_t sz = static_cast(param); for (; iterations>0; iterations--) { void *p = malloc(sz); if (!p) { abort(); } tc_free_sized(p, sz); // next iteration will use same free list as this iteration. So it // should be prevent next iterations malloc to go too far before // free done. But using same size will make free "too fast" since // we'll hit size class cache. } } static void bench_fastpath_memalign(long iterations, uintptr_t param) { size_t sz = static_cast(param); for (; iterations>0; iterations--) { void *p = tc_memalign(32, sz); if (!p) { abort(); } free(p); // next iteration will use same free list as this iteration. So it // should be prevent next iterations malloc to go too far before // free done. But using same size will make free "too fast" since // we'll hit size class cache. } } #endif // __GNUC__ #define STACKSZ (1 << 16) static void bench_fastpath_stack(long iterations, uintptr_t _param) { void *stack[STACKSZ]; size_t sz = 64; long param = static_cast(_param); param &= STACKSZ - 1; param = param ? param : 1; for (; iterations>0; iterations -= param) { for (long k = param-1; k >= 0; k--) { void *p = malloc(sz); if (!p) { abort(); } stack[k] = p; // this makes next iteration depend on result of this iteration sz = ((sz | reinterpret_cast(p)) & 511) + 16; } for (long k = 0; k < param; k++) { free(stack[k]); } } } static void bench_fastpath_stack_simple(long iterations, uintptr_t _param) { void *stack[STACKSZ]; size_t sz = 128; long param = static_cast(_param); param &= STACKSZ - 1; param = param ? param : 1; for (; iterations>0; iterations -= param) { for (long k = param-1; k >= 0; k--) { void *p = malloc(sz); if (!p) { abort(); } stack[k] = p; } for (long k = 0; k < param; k++) { free(stack[k]); } } } static void bench_fastpath_rnd_dependent(long iterations, uintptr_t _param) { static const uintptr_t rnd_c = 1013904223; static const uintptr_t rnd_a = 1664525; void *ptrs[STACKSZ]; size_t sz = 128; if ((_param & (_param - 1))) { abort(); } if (_param > STACKSZ) { abort(); } int param = static_cast(_param); for (; iterations>0; iterations -= param) { for (int k = param-1; k >= 0; k--) { void *p = malloc(sz); if (!p) { abort(); } ptrs[k] = p; sz = ((sz | reinterpret_cast(p)) & 511) + 16; } // this will iterate through all objects in order that is // unpredictable to processor's prefetchers uint32_t rnd = 0; uint32_t free_idx = 0; do { free(ptrs[free_idx]); rnd = rnd * rnd_a + rnd_c; free_idx = rnd & (param - 1); } while (free_idx != 0); } } static void *randomize_buffer[13<<20]; void randomize_one_size_class(size_t size) { int count = (100<<20) / size; if (count * sizeof(randomize_buffer[0]) > sizeof(randomize_buffer)) { abort(); } for (int i = 0; i < count; i++) { randomize_buffer[i] = malloc(size); } std::random_shuffle(randomize_buffer, randomize_buffer + count); for (int i = 0; i < count; i++) { free(randomize_buffer[i]); } } void randomize_size_classes() { randomize_one_size_class(8); int i; for (i = 16; i < 256; i += 16) { randomize_one_size_class(i); } for (; i < 512; i += 32) { randomize_one_size_class(i); } for (; i < 1024; i += 64) { randomize_one_size_class(i); } for (; i < (4 << 10); i += 128) { randomize_one_size_class(i); } for (; i < (32 << 10); i += 1024) { randomize_one_size_class(i); } } int main(void) { randomize_size_classes(); report_benchmark("bench_fastpath_throughput", bench_fastpath_throughput, 0); report_benchmark("bench_fastpath_dependent", bench_fastpath_dependent, 0); report_benchmark("bench_fastpath_simple", bench_fastpath_simple, 64); report_benchmark("bench_fastpath_simple", bench_fastpath_simple, 2048); report_benchmark("bench_fastpath_simple", bench_fastpath_simple, 16384); #ifdef HAVE_SIZED_FREE_OPTION if (is_sized_free_available()) { report_benchmark("bench_fastpath_simple_sized", bench_fastpath_simple_sized, 64); report_benchmark("bench_fastpath_simple_sized", bench_fastpath_simple_sized, 2048); } if (is_memalign_available()) { report_benchmark("bench_fastpath_memalign", bench_fastpath_memalign, 64); report_benchmark("bench_fastpath_memalign", bench_fastpath_memalign, 2048); } #endif for (int i = 8; i <= 512; i <<= 1) { report_benchmark("bench_fastpath_stack", bench_fastpath_stack, i); } report_benchmark("bench_fastpath_stack_simple", bench_fastpath_stack_simple, 32); report_benchmark("bench_fastpath_stack_simple", bench_fastpath_stack_simple, 8192); report_benchmark("bench_fastpath_rnd_dependent", bench_fastpath_rnd_dependent, 32); report_benchmark("bench_fastpath_rnd_dependent", bench_fastpath_rnd_dependent, 8192); return 0; }