use num_complex::Complex32; /// Factorizes a 10x10 matrix, given a column permutation /// vector, and solves for a single right-hand-side. fn main() { // A = [ // [2.10 0.14 0.09 ] // [ 1.10 0.06 0.03] // [ 1.70 0.04] // [ 1.00 0.32 0.19 0.32 0.44] // [ 0.06 1.60 ] // [ 2.20 ] // [ 0.32 1.90 0.43] // [0.14 0.19 1.10 0.22 ] // [0.09 0.32 0.22 2.40 ] // [ 0.03 0.04 0.44 0.43 3.20] // ] let n = 10; let arow = vec![ 0, 7, 8, 1, 4, 9, 2, 9, 3, 6, 7, 8, 9, 1, 4, 5, 3, 6, 9, 0, 3, 7, 8, 0, 3, 7, 8, 1, 2, 3, 6, 9, ]; let acolst = vec![0, 3, 6, 8, 13, 15, 16, 19, 23, 27, 32]; let a = vec![ 2.1, 0.14, 0.09, 1.1, 0.06, 0.03, 1.7, 0.04, 1.0, 0.32, 0.19, 0.32, 0.44, 0.06, 1.6, 2.2, 0.32, 1.9, 0.43, 0.14, 0.19, 1.1, 0.22, 0.09, 0.32, 0.22, 2.4, 0.03, 0.04, 0.44, 0.43, 3.2, ] .into_iter() .map(|v| Complex32::from(v)) .collect::>(); let mut b = vec![ 0.403, 0.28, 0.55, 1.504, 0.812, 1.32, 1.888, 1.168, 2.473, 3.695, ] .into_iter() .map(|v| Complex32::from(v)) .collect::>(); let col_perm = vec![6, 5, 2, 4, 1, 9, 7, 8, 0, 3]; let opts = gplu::Options::default(); let lu = gplu::factor::(n, &arow, &acolst, &a, Some(&col_perm), &opts).unwrap(); gplu::solve(&lu, &mut b, true).unwrap(); println!("{:?}", b.iter().map(|v| v.re).collect::>()); }