#!/usr/bin/env python3 from __future__ import annotations import argparse import contextlib import json import os import re import sys from abc import ABC, abstractmethod from enum import IntEnum from pathlib import Path from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterator, Sequence, TypeVar, cast import numpy as np import torch if TYPE_CHECKING: from torch import Tensor if 'NO_LOCAL_GGUF' not in os.environ: sys.path.insert(1, str(Path(__file__).parent / 'gguf-py')) import gguf from convert import HfVocab ###### MODEL DEFINITIONS ###### class SentencePieceTokenTypes(IntEnum): NORMAL = 1 UNKNOWN = 2 CONTROL = 3 USER_DEFINED = 4 UNUSED = 5 BYTE = 6 AnyModel = TypeVar("AnyModel", bound="type[Model]") class Model(ABC): _model_classes: dict[str, type[Model]] = {} def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool): self.dir_model = dir_model self.ftype = ftype self.fname_out = fname_out self.is_big_endian = is_big_endian self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE self.is_safetensors = self._is_model_safetensors() self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin") self.part_names = self._get_part_names() self.hparams = Model.load_hparams(self.dir_model) self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=False) self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"]) @property @abstractmethod def model_arch(self) -> gguf.MODEL_ARCH: pass def find_hparam(self, keys: Sequence[str], optional: bool = False) -> Any: key = next((k for k in keys if k in self.hparams), None) if key is not None: return self.hparams[key] if optional: return None raise KeyError(f"could not find any of: {keys}") def set_vocab(self): self._set_vocab_gpt2() def get_tensors(self) -> Iterator[tuple[str, Tensor]]: for part_name in self.part_names: print(f"gguf: loading model part '{part_name}'") ctx: ContextManager[Any] if self.is_safetensors: from safetensors import safe_open ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu")) else: ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True)) with ctx as model_part: for name in model_part.keys(): data = model_part.get_tensor(name) if self.is_safetensors else model_part[name] yield name, data def set_gguf_parameters(self): self.gguf_writer.add_name(self.dir_model.name) self.gguf_writer.add_block_count(self.block_count) if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None: self.gguf_writer.add_context_length(n_ctx) n_embd = self.find_hparam(["hidden_size", "n_embd"]) self.gguf_writer.add_embedding_length(n_embd) if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None: self.gguf_writer.add_feed_forward_length(n_ff) n_head = self.find_hparam(["num_attention_heads", "n_head"]) self.gguf_writer.add_head_count(n_head) if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None: self.gguf_writer.add_head_count_kv(n_head_kv) if (rope_theta := self.hparams.get("rope_theta")) is not None: self.gguf_writer.add_rope_freq_base(rope_theta) if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None: self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps) if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None: self.gguf_writer.add_layer_norm_eps(f_norm_eps) if (n_experts := self.hparams.get("num_local_experts")) is not None: self.gguf_writer.add_expert_count(n_experts) if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None: self.gguf_writer.add_expert_used_count(n_experts_used) self.gguf_writer.add_file_type(self.ftype) def write_tensors(self): block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer"))) tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) for name, data_torch in self.get_tensors(): # we don't need these if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")): continue old_dtype = data_torch.dtype # convert any unsupported data types to float32 if data_torch.dtype not in (torch.float16, torch.float32): data_torch = data_torch.to(torch.float32) data = data_torch.squeeze().numpy() # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: print(f"Can not map tensor {name!r}") sys.exit() n_dims = len(data.shape) data_dtype = data.dtype # if f32 desired, convert any float16 to float32 if self.ftype == 0 and data_dtype == np.float16: data = data.astype(np.float32) # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1: data = data.astype(np.float32) # if f16 desired, convert any float32 2-dim weight tensors to float16 if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) def write(self): self.write_tensors() self.gguf_writer.write_header_to_file() self.gguf_writer.write_kv_data_to_file() self.gguf_writer.write_tensors_to_file() self.gguf_writer.close() def write_vocab(self): self.gguf_writer.write_header_to_file() self.gguf_writer.write_kv_data_to_file() self.gguf_writer.close() @staticmethod def count_model_parts(dir_model: Path, prefix: str) -> int: num_parts = 0 for filename in os.listdir(dir_model): if filename.endswith(prefix): num_parts += 1 return num_parts @staticmethod def load_hparams(dir_model): with open(dir_model / "config.json", "r", encoding="utf-8") as f: return json.load(f) @classmethod def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]: assert names def func(modelcls: type[Model]): for name in names: cls._model_classes[name] = modelcls return modelcls return func @classmethod def from_model_architecture(cls, arch): try: return cls._model_classes[arch] except KeyError: raise NotImplementedError(f'Architecture {arch!r} not supported!') from None def _is_model_safetensors(self) -> bool: return Model.count_model_parts(self.dir_model, ".safetensors") > 0 def _get_part_names(self): if self.is_safetensors: if self.num_parts == 1: # there's only one .safetensors file return ("model.safetensors",) return (f"model-{n:05}-of-{self.num_parts:05}.safetensors" for n in range(1, self.num_parts + 1)) if self.num_parts == 1: # there's only one .bin file return ("pytorch_model.bin",) return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1)) def _set_vocab_gpt2(self): dir_model = self.dir_model hparams = self.hparams tokens: list[bytearray] = [] toktypes: list[int] = [] from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(dir_model) vocab_size = hparams.get("vocab_size", len(tokenizer.vocab)) assert max(tokenizer.vocab.values()) < vocab_size reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()} added_vocab = tokenizer.get_added_vocab() for i in range(vocab_size): if i not in reverse_vocab: pad_token = f"[PAD{i}]".encode('utf-8') tokens.append(bytearray(pad_token)) toktypes.append(gguf.TokenType.USER_DEFINED) elif reverse_vocab[i] in added_vocab: tokens.append(reverse_vocab[i]) if tokenizer.added_tokens_decoder[i].special: toktypes.append(gguf.TokenType.CONTROL) else: toktypes.append(gguf.TokenType.USER_DEFINED) else: tokens.append(reverse_vocab[i]) toktypes.append(gguf.TokenType.NORMAL) self.gguf_writer.add_tokenizer_model("gpt2") self.gguf_writer.add_token_list(tokens) self.gguf_writer.add_token_types(toktypes) special_vocab = gguf.SpecialVocab(dir_model, load_merges=True) special_vocab.add_to_gguf(self.gguf_writer) def _set_vocab_qwen(self): dir_model = self.dir_model hparams = self.hparams tokens: list[bytearray] = [] toktypes: list[int] = [] from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True) vocab_size = hparams["vocab_size"] assert max(tokenizer.get_vocab().values()) < vocab_size merges = [] vocab = {} mergeable_ranks = tokenizer.mergeable_ranks for token, rank in mergeable_ranks.items(): vocab[QwenModel.token_bytes_to_string(token)] = rank if len(token) == 1: continue merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank) assert len(merged) == 2 merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged))) # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined added_vocab = tokenizer.special_tokens reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in (vocab | added_vocab).items()} for i in range(vocab_size): if i not in reverse_vocab: pad_token = f"[PAD{i}]".encode("utf-8") tokens.append(bytearray(pad_token)) toktypes.append(gguf.TokenType.USER_DEFINED) elif reverse_vocab[i] in added_vocab: tokens.append(reverse_vocab[i]) toktypes.append(gguf.TokenType.CONTROL) else: tokens.append(reverse_vocab[i]) toktypes.append(gguf.TokenType.NORMAL) self.gguf_writer.add_tokenizer_model("gpt2") self.gguf_writer.add_token_list(tokens) self.gguf_writer.add_token_types(toktypes) special_vocab = gguf.SpecialVocab(dir_model, load_merges=False) special_vocab.merges = merges # only add special tokens when they were not already loaded from config.json if len(special_vocab.special_token_ids) == 0: special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"]) special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"]) # this one is usually not in config.json anyway special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"]) special_vocab.add_to_gguf(self.gguf_writer) def _set_vocab_sentencepiece(self): from sentencepiece import SentencePieceProcessor tokenizer_path = self.dir_model / 'tokenizer.model' tokens: list[bytes] = [] scores: list[float] = [] toktypes: list[int] = [] if not tokenizer_path.is_file(): print(f'Error: Missing {tokenizer_path}', file=sys.stderr) sys.exit(1) tokenizer = SentencePieceProcessor(str(tokenizer_path)) vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size()) for token_id in range(vocab_size): piece = tokenizer.id_to_piece(token_id) text = piece.encode("utf-8") score = tokenizer.get_score(token_id) toktype = SentencePieceTokenTypes.NORMAL if tokenizer.is_unknown(token_id): toktype = SentencePieceTokenTypes.UNKNOWN elif tokenizer.is_control(token_id): toktype = SentencePieceTokenTypes.CONTROL elif tokenizer.is_unused(token_id): toktype = SentencePieceTokenTypes.UNUSED elif tokenizer.is_byte(token_id): toktype = SentencePieceTokenTypes.BYTE tokens.append(text) scores.append(score) toktypes.append(toktype) added_tokens_file = self.dir_model / 'added_tokens.json' if added_tokens_file.is_file(): with open(added_tokens_file, "r", encoding="utf-8") as f: added_tokens_json = json.load(f) for key in added_tokens_json: tokens.append(key.encode("utf-8")) scores.append(-1000.0) toktypes.append(SentencePieceTokenTypes.USER_DEFINED) self.gguf_writer.add_tokenizer_model("llama") self.gguf_writer.add_token_list(tokens) self.gguf_writer.add_token_scores(scores) self.gguf_writer.add_token_types(toktypes) special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) special_vocab.add_to_gguf(self.gguf_writer) def _set_vocab_hf(self): path = self.dir_model added_tokens_path = self.dir_model vocab = HfVocab( path, added_tokens_path if added_tokens_path.exists() else None ) tokens = [] scores = [] toktypes = [] for text, score, toktype in vocab.all_tokens(): tokens.append(text) scores.append(score) toktypes.append(toktype) assert len(tokens) == vocab.vocab_size self.gguf_writer.add_tokenizer_model("llama") self.gguf_writer.add_token_list(tokens) self.gguf_writer.add_token_scores(scores) self.gguf_writer.add_token_types(toktypes) special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) special_vocab.add_to_gguf(self.gguf_writer) @Model.register("GPTNeoXForCausalLM") class GPTNeoXModel(Model): model_arch = gguf.MODEL_ARCH.GPTNEOX def set_gguf_parameters(self): block_count = self.hparams["num_hidden_layers"] self.gguf_writer.add_name(self.dir_model.name) self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) self.gguf_writer.add_block_count(block_count) self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) self.gguf_writer.add_rope_dimension_count( int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])), ) self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True)) self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"]) @Model.register("BloomForCausalLM") class BloomModel(Model): model_arch = gguf.MODEL_ARCH.BLOOM def set_gguf_parameters(self): self.gguf_writer.add_name("Bloom") n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed")) n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads")) self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed)) self.gguf_writer.add_embedding_length(n_embed) self.gguf_writer.add_feed_forward_length(4 * n_embed) self.gguf_writer.add_block_count(self.hparams["n_layer"]) self.gguf_writer.add_head_count(n_head) self.gguf_writer.add_head_count_kv(n_head) self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) self.gguf_writer.add_file_type(self.ftype) def write_tensors(self): block_count = self.hparams["n_layer"] tensors = dict(self.get_tensors()) tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) has_lm_head = True n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads")) n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed")) for name, data_torch in tensors.items(): if "lm_head.weight" not in tensors.keys() and "output.weight" not in tensors.keys(): has_lm_head = False name = re.sub(r'transformer\.', '', name) old_dtype = data_torch.dtype # convert any unsupported data types to float32 if data_torch.dtype not in (torch.float16, torch.float32): data_torch = data_torch.to(torch.float32) data = data_torch.squeeze().numpy() if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name): # Map bloom-style qkv_linear to gpt-style qkv_linear # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed)) data = np.concatenate( ( qkv_weights[:, 0, :, :].reshape((-1, n_embed)), qkv_weights[:, 1, :, :].reshape((-1, n_embed)), qkv_weights[:, 2, :, :].reshape((-1, n_embed)), ), axis=0, ) print("re-format attention.linear_qkv.weight") elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name): qkv_bias = data.reshape((n_head, 3, n_embed // n_head)) data = np.concatenate( ( qkv_bias[:, 0, :].reshape((n_embed,)), qkv_bias[:, 1, :].reshape((n_embed,)), qkv_bias[:, 2, :].reshape((n_embed,)), ), axis=0, ) print("re-format attention.linear_qkv.bias") # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: print(f"Can not map tensor {name!r}") sys.exit() n_dims = len(data.shape) data_dtype = data.dtype # if f32 desired, convert any float16 to float32 if self.ftype == 0 and data_dtype == np.float16: data = data.astype(np.float32) # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1: data = data.astype(np.float32) # if f16 desired, convert any float32 2-dim weight tensors to float16 if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) print(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) if not has_lm_head and name == "word_embeddings.weight": self.gguf_writer.add_tensor("output.weight", data) print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}") @Model.register("MPTForCausalLM") class MPTModel(Model): model_arch = gguf.MODEL_ARCH.MPT def set_gguf_parameters(self): block_count = self.hparams["n_layers"] self.gguf_writer.add_name(self.dir_model.name) self.gguf_writer.add_context_length(self.hparams["max_seq_len"]) self.gguf_writer.add_embedding_length(self.hparams["d_model"]) self.gguf_writer.add_block_count(block_count) self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"]) self.gguf_writer.add_head_count(self.hparams["n_heads"]) if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"): self.gguf_writer.add_head_count_kv(kv_n_heads) self.gguf_writer.add_layer_norm_eps(1e-5) if self.hparams["attn_config"]["clip_qkv"] is not None: self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"]) self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"]) def write_tensors(self): block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers")) tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) for name, data_torch in self.get_tensors(): # we don't need these if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")): continue old_dtype = data_torch.dtype # convert any unsupported data types to float32 if data_torch.dtype not in (torch.float16, torch.float32): data_torch = data_torch.to(torch.float32) data = data_torch.squeeze().numpy() # map tensor names if "scales" in name: new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias", ".scales")) if new_name is not None: new_name = new_name.replace("scales", "act.scales") else: new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: print(f"Can not map tensor {name!r}") sys.exit() n_dims = len(data.shape) data_dtype = data.dtype # if f32 desired, convert any float16 to float32 if self.ftype == 0 and data_dtype == np.float16: data = data.astype(np.float32) # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1: data = data.astype(np.float32) # if f16 desired, convert any float32 2-dim weight tensors to float16 if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) @Model.register("OrionForCausalLM") class OrionModel(Model): model_arch = gguf.MODEL_ARCH.ORION def set_vocab(self): self._set_vocab_sentencepiece() def set_gguf_parameters(self): block_count = self.hparams["num_hidden_layers"] head_count = self.hparams["num_attention_heads"] head_count_kv = self.hparams.get("num_key_value_heads", head_count) hf_repo = self.hparams.get("_name_or_path", "") ctx_length = 0 if "max_sequence_length" in self.hparams: ctx_length = self.hparams["max_sequence_length"] elif "max_position_embeddings" in self.hparams: ctx_length = self.hparams["max_position_embeddings"] elif "model_max_length" in self.hparams: ctx_length = self.hparams["model_max_length"] else: print("gguf: can not find ctx length parameter.") sys.exit() self.gguf_writer.add_file_type(self.ftype) self.gguf_writer.add_name(self.dir_model.name) self.gguf_writer.add_source_hf_repo(hf_repo) self.gguf_writer.add_tensor_data_layout("Meta AI original pth") self.gguf_writer.add_context_length(ctx_length) self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) self.gguf_writer.add_block_count(block_count) self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) self.gguf_writer.add_head_count(head_count) self.gguf_writer.add_head_count_kv(head_count_kv) # note: config provides rms norm but it is actually layer norm # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571 self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"]) def write_tensors(self): # Collect tensors from generator object model_kv = dict(self.get_tensors()) block_count = self.hparams["num_hidden_layers"] tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) for name, data_torch in model_kv.items(): # we don't need these if name.endswith(".rotary_emb.inv_freq"): continue old_dtype = data_torch.dtype # convert any unsupported data types to float32 if data_torch.dtype not in (torch.float16, torch.float32): data_torch = data_torch.to(torch.float32) data = data_torch.squeeze().numpy() # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: print(f"Can not map tensor {name!r}") sys.exit() n_dims = len(data.shape) data_dtype = data.dtype # if f32 desired, convert any float16 to float32 if self.ftype == 0 and data_dtype == np.float16: data = data.astype(np.float32) # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1: data = data.astype(np.float32) # if f16 desired, convert any float32 2-dim weight tensors to float16 if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM") class BaichuanModel(Model): model_arch = gguf.MODEL_ARCH.BAICHUAN def set_vocab(self): self._set_vocab_sentencepiece() def set_gguf_parameters(self): block_count = self.hparams["num_hidden_layers"] head_count = self.hparams["num_attention_heads"] head_count_kv = self.hparams.get("num_key_value_heads", head_count) hf_repo = self.hparams.get("_name_or_path", "") ctx_length = 0 if "max_sequence_length" in self.hparams: ctx_length = self.hparams["max_sequence_length"] elif "max_position_embeddings" in self.hparams: ctx_length = self.hparams["max_position_embeddings"] elif "model_max_length" in self.hparams: ctx_length = self.hparams["model_max_length"] else: print("gguf: can not find ctx length parameter.") sys.exit() self.gguf_writer.add_name(self.dir_model.name) self.gguf_writer.add_source_hf_repo(hf_repo) self.gguf_writer.add_tensor_data_layout("Meta AI original pth") self.gguf_writer.add_context_length(ctx_length) self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) self.gguf_writer.add_block_count(block_count) self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) self.gguf_writer.add_head_count(head_count) self.gguf_writer.add_head_count_kv(head_count_kv) self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]: if self.hparams["rope_scaling"].get("type") == "linear": self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"]) def write_tensors(self): # Collect tensors from generator object model_kv = dict(self.get_tensors()) block_count = self.hparams["num_hidden_layers"] head_count = self.hparams["num_attention_heads"] tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) head_count_kv = self.hparams.get("num_key_value_heads", head_count) for i in range(block_count): if (w := model_kv.get(f"model.layers.{i}.self_attn.W_pack.weight")) is not None: print(f"Unpacking and permuting layer {i}") model_kv[f"model.layers.{i}.self_attn.q_proj.weight"] = \ self._reverse_hf_permute_part(w, 0, head_count, head_count) model_kv[f"model.layers.{i}.self_attn.k_proj.weight"] = \ self._reverse_hf_permute_part(w, 1, head_count, head_count_kv) model_kv[f"model.layers.{i}.self_attn.v_proj.weight"] = \ self._reverse_hf_part(w, 2) del model_kv[f"model.layers.{i}.self_attn.W_pack.weight"] for name, data_torch in model_kv.items(): # we don't need these if name.endswith(".rotary_emb.inv_freq"): continue old_dtype = data_torch.dtype # convert any unsupported data types to float32 if data_torch.dtype not in (torch.float16, torch.float32): data_torch = data_torch.to(torch.float32) data = data_torch.squeeze().numpy() # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: print(f"Can not map tensor {name!r}") sys.exit() n_dims = len(data.shape) data_dtype = data.dtype # if f32 desired, convert any float16 to float32 if self.ftype == 0 and data_dtype == np.float16: data = data.astype(np.float32) # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1: data = data.astype(np.float32) # if f16 desired, convert any float32 2-dim weight tensors to float16 if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor: if n_kv_head is not None and n_head != n_kv_head: n_head //= n_kv_head return ( weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) .swapaxes(1, 2) .reshape(weights.shape) ) def _reverse_hf_permute_part( self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None, ) -> Tensor: r = weights.shape[0] // 3 return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv) def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor: r = weights.shape[0] // 3 return weights[r * n_part:r * n_part + r, ...] @Model.register("FalconForCausalLM", "RWForCausalLM") class FalconModel(Model): model_arch = gguf.MODEL_ARCH.FALCON def set_gguf_parameters(self): block_count = self.hparams.get("num_hidden_layers") if block_count is None: block_count = self.hparams["n_layer"] # old name n_head = self.hparams.get("num_attention_heads") if n_head is None: n_head = self.hparams["n_head"] # old name n_head_kv = self.hparams.get("num_kv_heads") if n_head_kv is None: n_head_kv = self.hparams.get("n_head_kv", 1) # old name self.gguf_writer.add_name("Falcon") self.gguf_writer.add_context_length(2048) # not in config.json self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"]) self.gguf_writer.add_block_count(block_count) self.gguf_writer.add_head_count(n_head) self.gguf_writer.add_head_count_kv(n_head_kv) self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) self.gguf_writer.add_file_type(self.ftype) def write_tensors(self): block_count = self.hparams.get("num_hidden_layers") if block_count is None: block_count = self.hparams["n_layer"] # old name n_head = self.hparams.get("num_attention_heads") if n_head is None: n_head = self.hparams["n_head"] # old name n_head_kv = self.hparams.get("num_kv_heads") if n_head_kv is None: n_head_kv = self.hparams.get("n_head_kv", 1) # old name head_dim = self.hparams["hidden_size"] // n_head tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) for name, data_torch in self.get_tensors(): old_dtype = data_torch.dtype # convert any unsupported data types to float32 if data_torch.dtype not in (torch.float16, torch.float32): data_torch = data_torch.to(torch.float32) # QKV tensor transform # The original query_key_value tensor contains n_head_kv "kv groups", # each consisting of n_head/n_head_kv query weights followed by one key # and one value weight (shared by all query heads in the kv group). # This layout makes it a big pain to work with in GGML. # So we rearrange them here,, so that we have n_head query weights # followed by n_head_kv key weights followed by n_head_kv value weights, # in contiguous fashion. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py if "query_key_value" in name: qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head) q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head) k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head) v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head) data_torch = torch.cat((q, k, v)).reshape_as(data_torch) data = data_torch.squeeze().numpy() # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: print(f"Can not map tensor {name!r}") sys.exit() n_dims = len(data.shape) data_dtype = data.dtype # if f32 desired, convert any float16 to float32 if self.ftype == 0 and data_dtype == np.float16: data = data.astype(np.float32) # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1: data = data.astype(np.float32) # if f16 desired, convert any float32 2-dim weight tensors to float16 if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) @Model.register("GPTBigCodeForCausalLM") class StarCoderModel(Model): model_arch = gguf.MODEL_ARCH.STARCODER def set_gguf_parameters(self): block_count = self.hparams["n_layer"] self.gguf_writer.add_name("StarCoder") self.gguf_writer.add_context_length(self.hparams["n_positions"]) self.gguf_writer.add_embedding_length(self.hparams["n_embd"]) self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"]) self.gguf_writer.add_block_count(block_count) self.gguf_writer.add_head_count(self.hparams["n_head"]) self.gguf_writer.add_head_count_kv(1) self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) self.gguf_writer.add_file_type(self.ftype) @Model.register("GPTRefactForCausalLM") class RefactModel(Model): model_arch = gguf.MODEL_ARCH.REFACT def set_gguf_parameters(self): hidden_dim = self.hparams["n_embd"] inner_dim = 4 * hidden_dim hidden_dim = int(2 * inner_dim / 3) multiple_of = 256 ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) block_count = self.hparams["n_layer"] self.gguf_writer.add_name("Refact") # refact uses Alibi. So this is from config.json which might be used by training. self.gguf_writer.add_context_length(self.hparams["n_positions"]) self.gguf_writer.add_embedding_length(self.hparams["n_embd"]) self.gguf_writer.add_feed_forward_length(ff_dim) self.gguf_writer.add_block_count(block_count) self.gguf_writer.add_head_count(self.hparams["n_head"]) self.gguf_writer.add_head_count_kv(1) self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"]) self.gguf_writer.add_file_type(self.ftype) def write_tensors(self): hidden_dim = self.hparams["n_embd"] inner_dim = 4 * hidden_dim hidden_dim = int(2 * inner_dim / 3) multiple_of = 256 ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) n_head = self.hparams["n_head"] n_head_kv = 1 head_dim = self.hparams["n_embd"] // n_head block_count = self.hparams["n_layer"] tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) tensors = dict(self.get_tensors()) for i in range(block_count): if (w := tensors.get(f"transformer.h.{i}.attn.kv.weight")) is not None: tensors[f"model.layers.{i}.self_attn.k_proj.weight"] = w[:n_head_kv * head_dim] tensors[f"model.layers.{i}.self_attn.v_proj.weight"] = w[n_head_kv * head_dim:] del tensors[f"transformer.h.{i}.attn.kv.weight"] if (w := tensors.get(f"transformer.h.{i}.attn.q.weight")) is not None: tensors[f"model.layers.{i}.self_attn.q_proj.weight"] = w del tensors[f"transformer.h.{i}.attn.q.weight"] if (w := tensors.get(f"transformer.h.{i}.mlp.gate_up_proj.weight")) is not None: tensors[f"model.layers.{i}.mlp.gate_proj.weight"] = w[:ff_dim] tensors[f"model.layers.{i}.mlp.up_proj.weight"] = w[ff_dim:] del tensors[f"transformer.h.{i}.mlp.gate_up_proj.weight"] for name, data_torch in tensors.items(): old_dtype = data_torch.dtype # convert any unsupported data types to float32 if data_torch.dtype not in (torch.float16, torch.float32): data_torch = data_torch.to(torch.float32) data = data_torch.squeeze().numpy() # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight",)) if new_name is None: print(f"Can not map tensor {name!r}") sys.exit() n_dims = len(data.shape) data_dtype = data.dtype # if f32 desired, convert any float16 to float32 if self.ftype == 0 and data_dtype == np.float16: data = data.astype(np.float32) # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1: data = data.astype(np.float32) # if f16 desired, convert any float32 2-dim weight tensors to float16 if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) @Model.register("PersimmonForCausalLM") class PersimmonModel(Model): model_arch = gguf.MODEL_ARCH.PERSIMMON def set_gguf_parameters(self): block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers")) head_count = self.hparams["num_attention_heads"] head_count_kv = head_count hidden_size = self.hparams["hidden_size"] self.gguf_writer.add_name('persimmon-8b-chat') self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) self.gguf_writer.add_embedding_length(hidden_size) self.gguf_writer.add_block_count(block_count) self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) # NOTE: not sure about this change - why does the model not have a rope dimension count when it is smaller # than the head size? # ref: https://github.com/ggerganov/llama.cpp/pull/4889 # self.gguf_writer.add_rope_dimension_count(hidden_size // head_count) self.gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2) self.gguf_writer.add_head_count(head_count) self.gguf_writer.add_head_count_kv(head_count_kv) self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"]) self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"]) def set_vocab(self): self._set_vocab_sentencepiece() # self.gguf_writer.add_bos_token_id(71013) # self.gguf_writer.add_eos_token_id(71013) def write_tensors(self): block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers")) tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) for name, data_torch in self.get_tensors(): if name.endswith(".self_attention.rotary_emb.inv_freq"): continue old_dtype = data_torch.dtype # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?) data = data_torch.to(torch.float32).squeeze().numpy() new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: print(f"Can not map tensor {name!r}") sys.exit() n_dims = len(data.shape) print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM") class StableLMModel(Model): model_arch = gguf.MODEL_ARCH.STABLELM def set_vocab(self): if (self.dir_model / "tokenizer.json").is_file(): self._set_vocab_gpt2() else: # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab self._set_vocab_qwen() def set_gguf_parameters(self): hparams = self.hparams block_count = hparams["num_hidden_layers"] self.gguf_writer.add_name(self.dir_model.name) self.gguf_writer.add_context_length(hparams["max_position_embeddings"]) self.gguf_writer.add_embedding_length(hparams["hidden_size"]) self.gguf_writer.add_block_count(block_count) self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"]) self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"]))) self.gguf_writer.add_head_count(hparams["num_attention_heads"]) self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True) self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"])) @Model.register("MixtralForCausalLM") class MixtralModel(Model): model_arch = gguf.MODEL_ARCH.LLAMA def set_vocab(self): self._set_vocab_sentencepiece() @Model.register("MiniCPMForCausalLM") class MiniCPMModel(Model): model_arch = gguf.MODEL_ARCH.MINICPM def set_gguf_parameters(self): block_count = self.hparams["num_hidden_layers"] self.gguf_writer.add_name("MiniCPM") self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) self.gguf_writer.add_block_count(block_count) self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"]) self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) self.gguf_writer.add_file_type(self.ftype) def set_vocab(self): self._set_vocab_hf() def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor: if n_kv_head is not None and n_head != n_kv_head: n_head //= n_kv_head return ( weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) .swapaxes(1, 2) .reshape(weights.shape) ) def write_tensors(self): block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer"))) tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) n_head = self.hparams.get("num_attention_heads") n_kv_head = self.hparams.get("num_key_value_heads") for name, data_torch in self.get_tensors(): # we don't need these if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")): continue old_dtype = data_torch.dtype # convert any unsupported data types to float32 if data_torch.dtype not in (torch.float16, torch.float32): data_torch = data_torch.to(torch.float32) # HF models permute some of the tensors, so we need to undo that if name.endswith(("q_proj.weight")): data_torch = self._reverse_hf_permute(data_torch, n_head, n_head) if name.endswith(("k_proj.weight")): data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head) data = data_torch.squeeze().numpy() # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: print(f"Can not map tensor {name!r}") sys.exit() n_dims = len(data.shape) data_dtype = data.dtype # if f32 desired, convert any float16 to float32 if self.ftype == 0 and data_dtype == np.float16: data = data.astype(np.float32) # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1: data = data.astype(np.float32) # if f16 desired, convert any float32 2-dim weight tensors to float16 if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) @Model.register("QWenLMHeadModel") class QwenModel(Model): model_arch = gguf.MODEL_ARCH.QWEN @staticmethod def token_bytes_to_string(b): from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode byte_encoder = bytes_to_unicode() return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')]) @staticmethod def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]: parts = [bytes([b]) for b in token] while True: min_idx = None min_rank = None for i, pair in enumerate(zip(parts[:-1], parts[1:])): rank = mergeable_ranks.get(pair[0] + pair[1]) if rank is not None and (min_rank is None or rank < min_rank): min_idx = i min_rank = rank if min_rank is None or (max_rank is not None and min_rank >= max_rank): break assert min_idx is not None parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:] return parts def set_vocab(self): self._set_vocab_qwen() def set_gguf_parameters(self): self.gguf_writer.add_name("Qwen") self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"]) self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"]) self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"]) def write_tensors(self): block_count = self.hparams["num_hidden_layers"] model_kv = dict(self.get_tensors()) tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) for name, data_torch in model_kv.items(): # we don't need these if name.endswith(".rotary_emb.inv_freq"): continue old_dtype = data_torch.dtype # convert any unsupported data types to float32 if data_torch.dtype not in (torch.float16, torch.float32): data_torch = data_torch.to(torch.float32) data = data_torch.squeeze().numpy() # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: print(f"Can not map tensor {name!r}") sys.exit() n_dims = len(data.shape) data_dtype = data.dtype # if f32 desired, convert any float16 to float32 if self.ftype == 0 and data_dtype == np.float16: data = data.astype(np.float32) # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1: data = data.astype(np.float32) # if f16 desired, convert any float32 2-dim weight tensors to float16 if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) @Model.register("Qwen2ForCausalLM") class Qwen2Model(Model): model_arch = gguf.MODEL_ARCH.QWEN2 @Model.register("GPT2LMHeadModel") class GPT2Model(Model): model_arch = gguf.MODEL_ARCH.GPT2 def set_gguf_parameters(self): self.gguf_writer.add_name(self.dir_model.name) self.gguf_writer.add_block_count(self.hparams["n_layer"]) self.gguf_writer.add_context_length(self.hparams["n_ctx"]) self.gguf_writer.add_embedding_length(self.hparams["n_embd"]) self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"]) self.gguf_writer.add_head_count(self.hparams["n_head"]) self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) self.gguf_writer.add_file_type(self.ftype) def write_tensors(self): block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer"))) tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) for name, data_torch in self.get_tensors(): # we don't need these if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq", ".attn.bias", ".attn.masked_bias")): continue if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")): data_torch = data_torch.transpose(1, 0) old_dtype = data_torch.dtype # convert any unsupported data types to float32 if data_torch.dtype not in (torch.float16, torch.float32): data_torch = data_torch.to(torch.float32) data = data_torch.squeeze().numpy() # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: print(f"Can not map tensor {name!r}") sys.exit() n_dims = len(data.shape) data_dtype = data.dtype # if f32 desired, convert any float16 to float32 if self.ftype == 0 and data_dtype == np.float16: data = data.astype(np.float32) # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1: data = data.astype(np.float32) # if f16 desired, convert any float32 2-dim weight tensors to float16 if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) # note: GPT2 output is tied to (same as) wte in original model if new_name == "token_embd.weight": print(f"output.weight, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor("output.weight", data) @Model.register("PhiForCausalLM") class Phi2Model(Model): model_arch = gguf.MODEL_ARCH.PHI2 def set_gguf_parameters(self): block_count = self.find_hparam(["num_hidden_layers", "n_layer"]) rot_pct = self.find_hparam(["partial_rotary_factor"]) n_embd = self.find_hparam(["hidden_size", "n_embd"]) n_head = self.find_hparam(["num_attention_heads", "n_head"]) self.gguf_writer.add_name("Phi2") self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"])) self.gguf_writer.add_embedding_length(n_embd) self.gguf_writer.add_feed_forward_length(4 * n_embd) self.gguf_writer.add_block_count(block_count) self.gguf_writer.add_head_count(n_head) self.gguf_writer.add_head_count_kv(n_head) self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"])) self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head) self.gguf_writer.add_file_type(self.ftype) self.gguf_writer.add_add_bos_token(False) @Model.register("PlamoForCausalLM") class PlamoModel(Model): model_arch = gguf.MODEL_ARCH.PLAMO def set_vocab(self): self._set_vocab_sentencepiece() def set_gguf_parameters(self): hparams = self.hparams block_count = hparams["num_hidden_layers"] self.gguf_writer.add_name("PLaMo") self.gguf_writer.add_context_length(4096) # not in config.json self.gguf_writer.add_embedding_length(hparams["hidden_size"]) self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) self.gguf_writer.add_block_count(block_count) self.gguf_writer.add_head_count(hparams["num_attention_heads"]) self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"]) def shuffle_attn_q_weight(self, data_torch): assert data_torch.size() == (5120, 5120) data_torch = data_torch.reshape(8, 5, 128, 5120) data_torch = torch.permute(data_torch, (1, 0, 2, 3)) data_torch = torch.reshape(data_torch, (5120, 5120)) return data_torch def shuffle_attn_output_weight(self, data_torch): assert data_torch.size() == (5120, 5120) data_torch = data_torch.reshape(5120, 8, 5, 128) data_torch = torch.permute(data_torch, (0, 2, 1, 3)) data_torch = torch.reshape(data_torch, (5120, 5120)) return data_torch def write_tensors(self): block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers")) tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) for name, data_torch in self.get_tensors(): if "self_attn.rotary_emb.inv_freq" in name: continue # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: print(f"Can not map tensor {name!r}") sys.exit() # shuffle for broadcasting of gqa in ggml_mul_mat if new_name.endswith("attn_q.weight"): data_torch = self.shuffle_attn_q_weight(data_torch) elif new_name.endswith("attn_output.weight"): data_torch = self.shuffle_attn_output_weight(data_torch) old_dtype = data_torch.dtype # convert any unsupported data types to float32 if data_torch.dtype not in (torch.float16, torch.float32): data_torch = data_torch.to(torch.float32) data = data_torch.squeeze().numpy() n_dims = len(data.shape) data_dtype = data.dtype # if f32 desired, convert any float16 to float32 if self.ftype == 0 and data_dtype == np.float16: data = data.astype(np.float32) # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1: data = data.astype(np.float32) # if f16 desired, convert any float32 2-dim weight tensors to float16 if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) @Model.register("CodeShellForCausalLM") class CodeShellModel(Model): model_arch = gguf.MODEL_ARCH.CODESHELL def set_gguf_parameters(self): block_count = self.hparams["n_layer"] self.gguf_writer.add_name("CodeShell") self.gguf_writer.add_context_length(self.hparams["n_positions"]) self.gguf_writer.add_embedding_length(self.hparams["n_embd"]) self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"]) self.gguf_writer.add_block_count(block_count) self.gguf_writer.add_head_count(self.hparams["n_head"]) self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"]) self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) self.gguf_writer.add_file_type(self.ftype) self.gguf_writer.add_rope_freq_base(10000.0) self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) self.gguf_writer.add_rope_scaling_factor(1.0) def write_tensors(self): block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer"))) tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) tensors = dict(self.get_tensors()) has_lm_head = "lm_head.weight" in tensors.keys() or "output.weight" in tensors.keys() for name, data_torch in tensors.items(): # we don't need these if name.endswith((".attn.rotary_emb.inv_freq")): continue old_dtype = data_torch.dtype # convert any unsupported data types to float32 if data_torch.dtype not in (torch.float16, torch.float32): data_torch = data_torch.to(torch.float32) data = data_torch.squeeze().numpy() # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: print(f"Can not map tensor {name!r}") sys.exit() n_dims = len(data.shape) data_dtype = data.dtype # if f32 desired, convert any float16 to float32 if self.ftype == 0 and data_dtype == np.float16: data = data.astype(np.float32) # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1: data = data.astype(np.float32) # if f16 desired, convert any float32 2-dim weight tensors to float16 if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) if not has_lm_head and name == "transformer.wte.weight": self.gguf_writer.add_tensor("output.weight", data) print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}") @Model.register("InternLM2ForCausalLM") class InternLM2Model(Model): model_arch = gguf.MODEL_ARCH.INTERNLM2 def set_vocab(self): # (TODO): Is there a better way? # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character # \x00 specially and convert it into an emoji character to prevent it from being mistakenly # recognized as an empty string in C++. from sentencepiece import SentencePieceProcessor from sentencepiece import sentencepiece_model_pb2 as model tokenizer_path = self.dir_model / 'tokenizer.model' tokens: list[bytes] = [] scores: list[float] = [] toktypes: list[int] = [] if not tokenizer_path.is_file(): print(f'Error: Missing {tokenizer_path}', file=sys.stderr) sys.exit(1) sentencepiece_model = model.ModelProto() sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read()) add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix tokenizer = SentencePieceProcessor(str(tokenizer_path)) vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size()) for token_id in range(vocab_size): piece = tokenizer.id_to_piece(token_id) text = piece.encode("utf-8") score = tokenizer.get_score(token_id) if text == b"\x00": # (TODO): fixme # Hack here and replace the \x00 characters. print(f"InternLM2 convert token '{text}' to '🐉'!") text = "🐉" toktype = SentencePieceTokenTypes.NORMAL if tokenizer.is_unknown(token_id): toktype = SentencePieceTokenTypes.UNKNOWN elif tokenizer.is_control(token_id): toktype = SentencePieceTokenTypes.CONTROL elif tokenizer.is_unused(token_id): toktype = SentencePieceTokenTypes.UNUSED elif tokenizer.is_byte(token_id): toktype = SentencePieceTokenTypes.BYTE tokens.append(text) scores.append(score) toktypes.append(toktype) added_tokens_file = self.dir_model / 'added_tokens.json' if added_tokens_file.is_file(): with open(added_tokens_file, "r", encoding="utf-8") as f: added_tokens_json = json.load(f) for key in added_tokens_json: tokens.append(key.encode("utf-8")) scores.append(-1000.0) toktypes.append(SentencePieceTokenTypes.USER_DEFINED) self.gguf_writer.add_tokenizer_model("llama") self.gguf_writer.add_token_list(tokens) self.gguf_writer.add_token_scores(scores) self.gguf_writer.add_token_types(toktypes) self.gguf_writer.add_add_space_prefix(add_prefix) special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) old_eos = special_vocab.special_token_ids["eos"] if "chat" in os.path.basename(self.dir_model.absolute()): # For the chat model, we replace the eos with '<|im_end|>'. special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer) print(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \ in chat mode so that the conversation can end normally.") special_vocab.add_to_gguf(self.gguf_writer) def _try_get_sft_eos(self, tokenizer): unused_145_list = tokenizer.encode('[UNUSED_TOKEN_145]') im_end_list = tokenizer.encode('<|im_end|>') assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1) if len(unused_145_list) == 1: eos_token = unused_145_list[0] if len(im_end_list) == 1: eos_token = im_end_list[0] return eos_token def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int): if n_head_kv is not None and n_head != n_head_kv: n_head = n_head_kv return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) .swapaxes(1, 2) .reshape(weights.shape)) def set_gguf_parameters(self): self.gguf_writer.add_name("InternLM2") self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"]) self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"]) self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"]) def post_write_tensors(self, tensor_map, name, data_torch): old_dtype = data_torch.dtype # convert any unsupported data types to float32 if data_torch.dtype not in (torch.float16, torch.float32): data_torch = data_torch.to(torch.float32) data = data_torch.squeeze().numpy() # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: print(f"Can not map tensor {name!r}") sys.exit() n_dims = len(data.shape) data_dtype = data.dtype # if f32 desired, convert any float16 to float32 if self.ftype == 0 and data_dtype == np.float16: data = data.astype(np.float32) # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1: data = data.astype(np.float32) # if f16 desired, convert any float32 2-dim weight tensors to float16 if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) def write_tensors(self): from einops import rearrange num_heads = self.hparams.get("num_attention_heads") num_kv_heads = self.hparams.get("num_key_value_heads") hidden_size = self.hparams.get("hidden_size") q_per_kv = num_heads // num_kv_heads head_dim = hidden_size // num_heads num_groups = num_heads // q_per_kv block_count = self.hparams["num_hidden_layers"] model_kv = dict(self.get_tensors()) tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv" for name, data_torch in model_kv.items(): # we don't need these if name.endswith(".rotary_emb.inv_freq"): continue if re.match(qkv_pattern, name): bid = re.findall(qkv_pattern, name)[0] qkv = data_torch qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim) q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :] # The model weights of q and k equire additional reshape. q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads) k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads) v = rearrange(v, " o g n i -> o (g n i)").T self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wq.weight", q) self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wk.weight", k) self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wv.weight", v) else: self.post_write_tensors(tensor_map, name, data_torch) @Model.register("BertModel") class BertModel(Model): model_arch = gguf.MODEL_ARCH.BERT def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.vocab_size = None def set_gguf_parameters(self): super().set_gguf_parameters() self.gguf_writer.add_causal_attention(False) # get pooling path pooling_path = None module_path = self.dir_model / "modules.json" if module_path.is_file(): with open(module_path, encoding="utf-8") as f: modules = json.load(f) for mod in modules: if mod["type"] == "sentence_transformers.models.Pooling": pooling_path = mod["path"] break # get pooling type if pooling_path is not None: with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f: pooling = json.load(f) if pooling["pooling_mode_mean_tokens"]: pooling_type = gguf.PoolingType.MEAN elif pooling["pooling_mode_cls_token"]: pooling_type = gguf.PoolingType.CLS else: raise NotImplementedError("Only MEAN and CLS pooling types supported") self.gguf_writer.add_pooling_type(pooling_type) def set_vocab(self): path = self.dir_model added_tokens_path = self.dir_model if self.dir_model.exists() else None # use huggingface vocab to get all tokens vocab = HfVocab(path, added_tokens_path) tokens, scores, toktypes = zip(*vocab.all_tokens()) assert len(tokens) == vocab.vocab_size self.vocab_size = vocab.vocab_size # we need this to validate the size of the token_type embeddings # though currently we are passing all zeros to the token_type embeddings n_token_types = len(set(toktypes)) self.gguf_writer.add_token_type_count(n_token_types) # convert to phantom space vocab def phantom(tok, typ): if tok.startswith(b"[") and tok.endswith(b"]"): return tok if tok.startswith(b"##"): return tok[2:] return b"\xe2\x96\x81" + tok tokens = tuple(phantom(t, y) for t, y in zip(tokens, toktypes)) # set up bos and eos tokens (cls and sep) self.gguf_writer.add_bos_token_id(vocab.tokenizer.cls_token_id) self.gguf_writer.add_eos_token_id(vocab.tokenizer.sep_token_id) # add vocab to gguf self.gguf_writer.add_tokenizer_model("bert") self.gguf_writer.add_token_list(tokens) self.gguf_writer.add_token_scores(scores) self.gguf_writer.add_token_types(toktypes) # handle special tokens special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) special_vocab.add_to_gguf(self.gguf_writer) def write_tensors(self): tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count) tensors = dict(self.get_tensors()) for name, data_torch in tensors.items(): # we are only using BERT for embeddings so we don't need the pooling layer if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"): continue # we don't need these # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: print(f"Can not map tensor {name!r}") sys.exit() data = data_torch.squeeze().numpy() n_dims = len(data.shape) new_dtype: type[np.floating[Any]] if ( self.ftype == 1 and name.endswith(".weight") and n_dims == 2 and name != "embeddings.token_type_embeddings.weight" # not used with get_rows, must be F32 ): # if f16 desired, convert any float32 2-dim weight tensors to float16 new_dtype = np.float16 else: # if f32 desired, convert any float16 to float32 new_dtype = np.float32 print(f"{new_name}, n_dims = {n_dims}, {data_torch.dtype} --> {new_dtype}") if data.dtype != new_dtype: data = data.astype(new_dtype) self.gguf_writer.add_tensor(new_name, data) @Model.register("NomicBertModel") class NomicBertModel(BertModel): model_arch = gguf.MODEL_ARCH.NOMIC_BERT def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # the HF config claims n_ctx=8192, but it uses RoPE scaling self.hparams["n_ctx"] = 2048 # SwigLU activation assert self.hparams["activation_function"] == "swiglu" # this doesn't do anything in the HF version assert self.hparams["causal"] is False # no bias tensors assert self.hparams["qkv_proj_bias"] is False assert self.hparams["mlp_fc1_bias"] is False assert self.hparams["mlp_fc2_bias"] is False # norm at end of layer assert self.hparams["prenorm"] is False # standard RoPE assert self.hparams["rotary_emb_fraction"] == 1.0 assert self.hparams["rotary_emb_interleaved"] is False assert self.hparams["rotary_emb_scale_base"] is None def set_gguf_parameters(self): super().set_gguf_parameters() self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"]) def get_tensors(self): assert self.vocab_size is not None for name, data in super().get_tensors(): # Nomic Embed's token embeddings tensor is padded, but llama.cpp wants tensor sizes to match exactly. if name == 'embeddings.word_embeddings.weight' and data.shape[1] != self.vocab_size: rounded_vocab_size = (self.vocab_size + 63) // 64 * 64 assert data.shape == (rounded_vocab_size, self.hparams["n_embd"]) data = data[:self.vocab_size, :] yield name, data @Model.register("GemmaForCausalLM") class GemmaModel(Model): model_arch = gguf.MODEL_ARCH.GEMMA def set_vocab(self): self._set_vocab_sentencepiece() def set_gguf_parameters(self): hparams = self.hparams block_count = hparams["num_hidden_layers"] self.gguf_writer.add_name(self.dir_model.name) self.gguf_writer.add_context_length(hparams["max_position_embeddings"]) self.gguf_writer.add_embedding_length(hparams["hidden_size"]) self.gguf_writer.add_block_count(block_count) self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) self.gguf_writer.add_head_count(hparams["num_attention_heads"]) self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"]) self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) self.gguf_writer.add_key_length(hparams["head_dim"]) self.gguf_writer.add_value_length(hparams["head_dim"]) self.gguf_writer.add_file_type(self.ftype) def write_tensors(self): block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer"))) tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) for name, data_torch in self.get_tensors(): old_dtype = data_torch.dtype # convert any unsupported data types to float32 if data_torch.dtype not in (torch.float16, torch.float32): data_torch = data_torch.to(torch.float32) # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89 if name.endswith("norm.weight"): data_torch = data_torch + 1 data = data_torch.squeeze().numpy() # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: print(f"Can not map tensor {name!r}") sys.exit() n_dims = len(data.shape) data_dtype = data.dtype data = data.astype(np.float32) # if f16 desired, convert any float32 2-dim weight tensors to float16 if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) @Model.register("Starcoder2ForCausalLM") class StarCoder2Model(Model): model_arch = gguf.MODEL_ARCH.STARCODER2 ###### CONVERSION LOGIC ###### def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser( description="Convert a huggingface model to a GGML compatible file") parser.add_argument( "--vocab-only", action="store_true", help="extract only the vocab", ) parser.add_argument( "--awq-path", type=Path, default=None, help="Path to scale awq cache file") parser.add_argument( "--outfile", type=Path, help="path to write to; default: based on input", ) parser.add_argument( "--outtype", type=str, choices=["f32", "f16"], default="f16", help="output format - use f32 for float32, f16 for float16", ) parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine") parser.add_argument( "model", type=Path, help="directory containing model file", ) return parser.parse_args() def main() -> None: args = parse_args() dir_model = args.model if args.awq_path: sys.path.insert(1, str(Path(__file__).parent / 'awq-py')) from awq.apply_awq import add_scale_weights # type: ignore[import-not-found] tmp_model_path = args.model / "weighted_model" dir_model = tmp_model_path if tmp_model_path.is_dir(): print(f"{tmp_model_path} exists as a weighted model.") else: tmp_model_path.mkdir(parents=True, exist_ok=True) print("Saving new weighted model ...") add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path)) print(f"Saved weighted model at {tmp_model_path}.") if not dir_model.is_dir(): print(f'Error: {args.model} is not a directory', file=sys.stderr) sys.exit(1) ftype_map = { "f32": gguf.GGMLQuantizationType.F32, "f16": gguf.GGMLQuantizationType.F16, } if args.outfile is not None: fname_out = args.outfile else: # output in the same directory as the model by default fname_out = dir_model / f'ggml-model-{args.outtype}.gguf' print(f"Loading model: {dir_model.name}") hparams = Model.load_hparams(dir_model) with torch.inference_mode(): model_class = Model.from_model_architecture(hparams["architectures"][0]) model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian) print("Set model parameters") model_instance.set_gguf_parameters() print("Set model tokenizer") model_instance.set_vocab() if args.vocab_only: print(f"Exporting model vocab to '{fname_out}'") model_instance.write_vocab() else: print(f"Exporting model to '{fname_out}'") model_instance.write() print(f"Model successfully exported to '{fname_out}'") if __name__ == '__main__': main()