// Copyright 2016-2017 The Servo Project Developers. // // Licensed under the Apache License, Version 2.0 // . // This file may not be copied, modified, or distributed // except according to those terms. //! A crate for measuring the heap usage of data structures in a way that //! integrates with Firefox's memory reporting, particularly the use of //! mozjemalloc and DMD. In particular, it has the following features. //! - It isn't bound to a particular heap allocator. //! - It provides traits for both "shallow" and "deep" measurement, which gives //! flexibility in the cases where the traits can't be used. //! - It allows for measuring blocks even when only an interior pointer can be //! obtained for heap allocations, e.g. `HashSet` and `HashMap`. (This relies //! on the heap allocator having suitable support, which mozjemalloc has.) //! - It allows handling of types like `Rc` and `Arc` by providing traits that //! are different to the ones for non-graph structures. //! //! Suggested uses are as follows. //! - When possible, use the `MallocSizeOf` trait. (Deriving support is //! provided by the `malloc_size_of_derive` crate.) //! - If you need an additional synchronization argument, provide a function //! that is like the standard trait method, but with the extra argument. //! - If you need multiple measurements for a type, provide a function named //! `add_size_of` that takes a mutable reference to a struct that contains //! the multiple measurement fields. //! - When deep measurement (via `MallocSizeOf`) cannot be implemented for a //! type, shallow measurement (via `MallocShallowSizeOf`) in combination with //! iteration can be a useful substitute. //! - `Rc` and `Arc` are always tricky, which is why `MallocSizeOf` is not (and //! should not be) implemented for them. //! - If an `Rc` or `Arc` is known to be a "primary" reference and can always //! be measured, it should be measured via the `MallocUnconditionalSizeOf` //! trait. //! - If an `Rc` or `Arc` should be measured only if it hasn't been seen //! before, it should be measured via the `MallocConditionalSizeOf` trait. //! - Using universal function call syntax is a good idea when measuring boxed //! fields in structs, because it makes it clear that the Box is being //! measured as well as the thing it points to. E.g. //! ` as MallocSizeOf>::size_of(field, ops)`. #[cfg(feature = "app_units")] extern crate app_units; #[cfg(feature = "cssparser")] extern crate cssparser; #[cfg(feature = "serde")] extern crate serde; #[cfg(feature = "serde_bytes")] extern crate serde_bytes; #[cfg(feature = "smallbitvec")] extern crate smallbitvec; #[cfg(feature = "smallvec")] extern crate smallvec; #[cfg(feature = "string_cache")] extern crate string_cache; #[cfg(feature = "thin_slice")] extern crate thin_slice; #[cfg(feature = "url")] extern crate url; #[cfg(feature = "void")] extern crate void; #[cfg(feature = "xml5ever")] extern crate xml5ever; #[cfg(feature = "serde_bytes")] use serde_bytes::ByteBuf; use std::hash::{BuildHasher, Hash}; use std::mem::size_of; use std::ops::Range; use std::ops::{Deref, DerefMut}; use std::os::raw::c_void; #[cfg(feature = "void")] use void::Void; /// A C function that takes a pointer to a heap allocation and returns its size. type VoidPtrToSizeFn = unsafe extern "C" fn(ptr: *const c_void) -> usize; /// A closure implementing a stateful predicate on pointers. type VoidPtrToBoolFnMut = dyn FnMut(*const c_void) -> bool; /// Operations used when measuring heap usage of data structures. pub struct MallocSizeOfOps { /// A function that returns the size of a heap allocation. size_of_op: VoidPtrToSizeFn, /// Like `size_of_op`, but can take an interior pointer. Optional because /// not all allocators support this operation. If it's not provided, some /// memory measurements will actually be computed estimates rather than /// real and accurate measurements. enclosing_size_of_op: Option, /// Check if a pointer has been seen before, and remember it for next time. /// Useful when measuring `Rc`s and `Arc`s. Optional, because many places /// don't need it. have_seen_ptr_op: Option>, } impl MallocSizeOfOps { pub fn new( size_of: VoidPtrToSizeFn, malloc_enclosing_size_of: Option, have_seen_ptr: Option>, ) -> Self { MallocSizeOfOps { size_of_op: size_of, enclosing_size_of_op: malloc_enclosing_size_of, have_seen_ptr_op: have_seen_ptr, } } /// Check if an allocation is empty. This relies on knowledge of how Rust /// handles empty allocations, which may change in the future. fn is_empty(ptr: *const T) -> bool { // The correct condition is this: // `ptr as usize <= ::std::mem::align_of::()` // But we can't call align_of() on a ?Sized T. So we approximate it // with the following. 256 is large enough that it should always be // larger than the required alignment, but small enough that it is // always in the first page of memory and therefore not a legitimate // address. return ptr as *const usize as usize <= 256; } /// Call `size_of_op` on `ptr`, first checking that the allocation isn't /// empty, because some types (such as `Vec`) utilize empty allocations. pub unsafe fn malloc_size_of(&self, ptr: *const T) -> usize { if MallocSizeOfOps::is_empty(ptr) { 0 } else { (self.size_of_op)(ptr as *const c_void) } } /// Is an `enclosing_size_of_op` available? pub fn has_malloc_enclosing_size_of(&self) -> bool { self.enclosing_size_of_op.is_some() } /// Call `enclosing_size_of_op`, which must be available, on `ptr`, which /// must not be empty. pub unsafe fn malloc_enclosing_size_of(&self, ptr: *const T) -> usize { assert!(!MallocSizeOfOps::is_empty(ptr)); (self.enclosing_size_of_op.unwrap())(ptr as *const c_void) } /// Call `have_seen_ptr_op` on `ptr`. pub fn have_seen_ptr(&mut self, ptr: *const T) -> bool { let have_seen_ptr_op = self .have_seen_ptr_op .as_mut() .expect("missing have_seen_ptr_op"); have_seen_ptr_op(ptr as *const c_void) } } /// Trait for measuring the "deep" heap usage of a data structure. This is the /// most commonly-used of the traits. pub trait MallocSizeOf { /// Measure the heap usage of all descendant heap-allocated structures, but /// not the space taken up by the value itself. fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize; } /// Trait for measuring the "shallow" heap usage of a container. pub trait MallocShallowSizeOf { /// Measure the heap usage of immediate heap-allocated descendant /// structures, but not the space taken up by the value itself. Anything /// beyond the immediate descendants must be measured separately, using /// iteration. fn shallow_size_of(&self, ops: &mut MallocSizeOfOps) -> usize; } /// Like `MallocSizeOf`, but with a different name so it cannot be used /// accidentally with derive(MallocSizeOf). For use with types like `Rc` and /// `Arc` when appropriate (e.g. when measuring a "primary" reference). pub trait MallocUnconditionalSizeOf { /// Measure the heap usage of all heap-allocated descendant structures, but /// not the space taken up by the value itself. fn unconditional_size_of(&self, ops: &mut MallocSizeOfOps) -> usize; } /// `MallocUnconditionalSizeOf` combined with `MallocShallowSizeOf`. pub trait MallocUnconditionalShallowSizeOf { /// `unconditional_size_of` combined with `shallow_size_of`. fn unconditional_shallow_size_of(&self, ops: &mut MallocSizeOfOps) -> usize; } /// Like `MallocSizeOf`, but only measures if the value hasn't already been /// measured. For use with types like `Rc` and `Arc` when appropriate (e.g. /// when there is no "primary" reference). pub trait MallocConditionalSizeOf { /// Measure the heap usage of all heap-allocated descendant structures, but /// not the space taken up by the value itself, and only if that heap usage /// hasn't already been measured. fn conditional_size_of(&self, ops: &mut MallocSizeOfOps) -> usize; } /// `MallocConditionalSizeOf` combined with `MallocShallowSizeOf`. pub trait MallocConditionalShallowSizeOf { /// `conditional_size_of` combined with `shallow_size_of`. fn conditional_shallow_size_of(&self, ops: &mut MallocSizeOfOps) -> usize; } impl MallocSizeOf for String { fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize { unsafe { ops.malloc_size_of(self.as_ptr()) } } } #[cfg(feature = "smartstring")] impl MallocSizeOf for smartstring::alias::String { fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize { if self.is_inline() { return 0; } unsafe { ops.malloc_size_of(self.as_ptr()) } } } impl<'a, T: ?Sized> MallocSizeOf for &'a T { fn size_of(&self, _ops: &mut MallocSizeOfOps) -> usize { // Zero makes sense for a non-owning reference. 0 } } impl MallocShallowSizeOf for Box { fn shallow_size_of(&self, ops: &mut MallocSizeOfOps) -> usize { unsafe { ops.malloc_size_of(&**self) } } } impl MallocSizeOf for Box { fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize { self.shallow_size_of(ops) + (**self).size_of(ops) } } #[cfg(feature = "thin_slice")] impl MallocShallowSizeOf for thin_slice::ThinBoxedSlice { fn shallow_size_of(&self, ops: &mut MallocSizeOfOps) -> usize { let mut n = 0; unsafe { n += thin_slice::ThinBoxedSlice::spilled_storage(self) .map_or(0, |ptr| ops.malloc_size_of(ptr)); n += ops.malloc_size_of(&**self); } n } } #[cfg(feature = "thin_slice")] impl MallocSizeOf for thin_slice::ThinBoxedSlice { fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize { self.shallow_size_of(ops) + (**self).size_of(ops) } } impl MallocSizeOf for () { fn size_of(&self, _ops: &mut MallocSizeOfOps) -> usize { 0 } } impl MallocSizeOf for (T1, T2) where T1: MallocSizeOf, T2: MallocSizeOf, { fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize { self.0.size_of(ops) + self.1.size_of(ops) } } impl MallocSizeOf for (T1, T2, T3) where T1: MallocSizeOf, T2: MallocSizeOf, T3: MallocSizeOf, { fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize { self.0.size_of(ops) + self.1.size_of(ops) + self.2.size_of(ops) } } impl MallocSizeOf for (T1, T2, T3, T4) where T1: MallocSizeOf, T2: MallocSizeOf, T3: MallocSizeOf, T4: MallocSizeOf, { fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize { self.0.size_of(ops) + self.1.size_of(ops) + self.2.size_of(ops) + self.3.size_of(ops) } } impl MallocSizeOf for Option { fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize { if let Some(val) = self.as_ref() { val.size_of(ops) } else { 0 } } } impl MallocSizeOf for Result { fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize { match *self { Ok(ref x) => x.size_of(ops), Err(ref e) => e.size_of(ops), } } } impl MallocSizeOf for std::cell::Cell { fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize { self.get().size_of(ops) } } impl MallocSizeOf for std::cell::RefCell { fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize { self.borrow().size_of(ops) } } impl<'a, B: ?Sized + ToOwned> MallocSizeOf for std::borrow::Cow<'a, B> where B::Owned: MallocSizeOf, { fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize { match *self { std::borrow::Cow::Borrowed(_) => 0, std::borrow::Cow::Owned(ref b) => b.size_of(ops), } } } impl MallocSizeOf for [T] { fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize { let mut n = 0; for elem in self.iter() { n += elem.size_of(ops); } n } } #[cfg(feature = "serde_bytes")] impl MallocShallowSizeOf for ByteBuf { fn shallow_size_of(&self, ops: &mut MallocSizeOfOps) -> usize { unsafe { ops.malloc_size_of(self.as_ptr()) } } } #[cfg(feature = "serde_bytes")] impl MallocSizeOf for ByteBuf { fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize { let mut n = self.shallow_size_of(ops); for elem in self.iter() { n += elem.size_of(ops); } n } } impl MallocShallowSizeOf for Vec { fn shallow_size_of(&self, ops: &mut MallocSizeOfOps) -> usize { unsafe { ops.malloc_size_of(self.as_ptr()) } } } impl MallocSizeOf for Vec { fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize { let mut n = self.shallow_size_of(ops); for elem in self.iter() { n += elem.size_of(ops); } n } } impl MallocShallowSizeOf for std::collections::VecDeque { fn shallow_size_of(&self, ops: &mut MallocSizeOfOps) -> usize { if ops.has_malloc_enclosing_size_of() { if let Some(front) = self.front() { // The front element is an interior pointer. unsafe { ops.malloc_enclosing_size_of(&*front) } } else { // This assumes that no memory is allocated when the VecDeque is empty. 0 } } else { // An estimate. self.capacity() * size_of::() } } } impl MallocSizeOf for std::collections::VecDeque { fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize { let mut n = self.shallow_size_of(ops); for elem in self.iter() { n += elem.size_of(ops); } n } } #[cfg(feature = "smallvec")] impl MallocShallowSizeOf for smallvec::SmallVec { fn shallow_size_of(&self, ops: &mut MallocSizeOfOps) -> usize { if self.spilled() { unsafe { ops.malloc_size_of(self.as_ptr()) } } else { 0 } } } #[cfg(feature = "smallvec")] impl MallocSizeOf for smallvec::SmallVec where A: smallvec::Array, A::Item: MallocSizeOf, { fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize { let mut n = self.shallow_size_of(ops); for elem in self.iter() { n += elem.size_of(ops); } n } } impl MallocShallowSizeOf for std::collections::HashSet where T: Eq + Hash, S: BuildHasher, { fn shallow_size_of(&self, ops: &mut MallocSizeOfOps) -> usize { if ops.has_malloc_enclosing_size_of() { // The first value from the iterator gives us an interior pointer. // `ops.malloc_enclosing_size_of()` then gives us the storage size. // This assumes that the `HashSet`'s contents (values and hashes) // are all stored in a single contiguous heap allocation. self.iter() .next() .map_or(0, |t| unsafe { ops.malloc_enclosing_size_of(t) }) } else { // An estimate. self.capacity() * (size_of::() + size_of::()) } } } impl MallocSizeOf for std::collections::HashSet where T: Eq + Hash + MallocSizeOf, S: BuildHasher, { fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize { let mut n = self.shallow_size_of(ops); for t in self.iter() { n += t.size_of(ops); } n } } impl MallocShallowSizeOf for std::collections::HashMap where K: Eq + Hash, S: BuildHasher, { fn shallow_size_of(&self, ops: &mut MallocSizeOfOps) -> usize { // See the implementation for std::collections::HashSet for details. if ops.has_malloc_enclosing_size_of() { self.values() .next() .map_or(0, |v| unsafe { ops.malloc_enclosing_size_of(v) }) } else { self.capacity() * (size_of::() + size_of::() + size_of::()) } } } impl MallocSizeOf for std::collections::HashMap where K: Eq + Hash + MallocSizeOf, V: MallocSizeOf, S: BuildHasher, { fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize { let mut n = self.shallow_size_of(ops); for (k, v) in self.iter() { n += k.size_of(ops); n += v.size_of(ops); } n } } // PhantomData is always 0. impl MallocSizeOf for std::marker::PhantomData { fn size_of(&self, _ops: &mut MallocSizeOfOps) -> usize { 0 } } // XXX: we don't want MallocSizeOf to be defined for Rc and Arc. If negative // trait bounds are ever allowed, this code should be uncommented. // (We do have a compile-fail test for this: // rc_arc_must_not_derive_malloc_size_of.rs) //impl !MallocSizeOf for Arc { } //impl !MallocShallowSizeOf for Arc { } /// If a mutex is stored directly as a member of a data type that is being measured, /// it is the unique owner of its contents and deserves to be measured. /// /// If a mutex is stored inside of an Arc value as a member of a data type that is being measured, /// the Arc will not be automatically measured so there is no risk of overcounting the mutex's /// contents. impl MallocSizeOf for std::sync::Mutex { fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize { (*self.lock().unwrap()).size_of(ops) } } #[cfg(feature = "smallbitvec")] impl MallocSizeOf for smallbitvec::SmallBitVec { fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize { if let Some(ptr) = self.heap_ptr() { unsafe { ops.malloc_size_of(ptr) } } else { 0 } } } #[cfg(feature = "void")] impl MallocSizeOf for Void { #[inline] fn size_of(&self, _ops: &mut MallocSizeOfOps) -> usize { void::unreachable(*self) } } #[cfg(feature = "string_cache")] impl MallocSizeOf for string_cache::Atom { fn size_of(&self, _ops: &mut MallocSizeOfOps) -> usize { 0 } } /// For use on types where size_of() returns 0. #[macro_export] macro_rules! malloc_size_of_is_0( ($($ty:ty),+) => ( $( impl $crate::MallocSizeOf for $ty { #[inline(always)] fn size_of(&self, _: &mut $crate::MallocSizeOfOps) -> usize { 0 } } )+ ); ($($ty:ident<$($gen:ident),+>),+) => ( $( impl<$($gen: $crate::MallocSizeOf),+> $crate::MallocSizeOf for $ty<$($gen),+> { #[inline(always)] fn size_of(&self, _: &mut $crate::MallocSizeOfOps) -> usize { 0 } } )+ ); ); malloc_size_of_is_0!(bool, char, str); malloc_size_of_is_0!(u8, u16, u32, u64, u128, usize); malloc_size_of_is_0!(i8, i16, i32, i64, i128, isize); malloc_size_of_is_0!(f32, f64); malloc_size_of_is_0!(std::sync::atomic::AtomicBool); malloc_size_of_is_0!(std::sync::atomic::AtomicIsize); malloc_size_of_is_0!(std::sync::atomic::AtomicUsize); malloc_size_of_is_0!(Range, Range, Range, Range, Range); malloc_size_of_is_0!(Range, Range, Range, Range, Range); malloc_size_of_is_0!(Range, Range); #[cfg(feature = "app_units")] malloc_size_of_is_0!(app_units::Au); #[cfg(feature = "cssparser")] malloc_size_of_is_0!(cssparser::RGBA, cssparser::TokenSerializationType); #[cfg(feature = "url")] impl MallocSizeOf for url::Host { fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize { match *self { url::Host::Domain(ref s) => s.size_of(ops), _ => 0, } } } #[cfg(feature = "xml5ever")] impl MallocSizeOf for xml5ever::QualName { fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize { self.prefix.size_of(ops) + self.ns.size_of(ops) + self.local.size_of(ops) } } /// Measurable that defers to inner value and used to verify MallocSizeOf implementation in a /// struct. #[derive(Clone)] pub struct Measurable(pub T); impl Deref for Measurable { type Target = T; fn deref(&self) -> &T { &self.0 } } impl DerefMut for Measurable { fn deref_mut(&mut self) -> &mut T { &mut self.0 } }