1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
//! A growable, reusable box for Rust. //! //! This crate provides a custom Box type with matching API that also allows to reuse the same //! memory block to store different types with the minimal amount of allocations and is supposed to be //! used with a pool-based allocator such as [`GrowablePool`]. //! //! # Notes //! //! This crate uses a lot of ground-breaking features of Rust and therefore //! is only available on the latest Nightly build. //! //! [`GrowablePool`]: struct.GrowablePool.html #![deny(missing_docs, missing_debug_implementations)] #![feature(allocator_api, coerce_unsized, slice_ptr_get, unsize)] use std::{ alloc::{handle_alloc_error, Allocator, Global, Layout}, cmp, collections::VecDeque, fmt, marker::Unsize, mem, ops::{self, CoerceUnsized}, ptr::{self, NonNull}, }; /// A customizable [`GrowablePool`] builder. /// /// # Examples /// /// ``` /// # use growable::*; /// let _ = GrowablePool::builder() /// .with_default_capacity(128) /// .with_default_ptr_alignment(16) /// .with_capacity(512) /// .enable_overgrow(true) /// .build(); /// ``` /// /// [`GrowablePool`]: struct.GrowablePool.html #[derive(Debug, Clone, PartialEq, Eq)] pub struct GrowablePoolBuilder { len: usize, per_growable_len: usize, per_growable_ptr_alignment: usize, overgrow: bool, } impl Default for GrowablePoolBuilder { fn default() -> Self { GrowablePoolBuilder::new() } } impl GrowablePoolBuilder { /// Creates a new pool builder with default options. pub fn new() -> Self { GrowablePoolBuilder { len: 0, per_growable_len: 8, per_growable_ptr_alignment: 8, overgrow: true, } } /// If set to `false` all returning [`Growable`] will be dropped if /// there is not enough free space available in a pool. /// /// [`Growable`]: struct.Growable.html pub fn enable_overgrow(&mut self, enable: bool) -> &mut Self { self.overgrow = enable; self } /// Sets the default capacity for each allocated [`Growable`]. /// /// [`Growable`]: struct.Growable.html pub fn with_default_capacity(&mut self, len: usize) -> &mut Self { self.per_growable_len = len; self } /// Sets the default ptr alignment for each allocated [`Growable`]. /// /// [`Growable`]: struct.Growable.html pub fn with_default_ptr_alignment(&mut self, ptr_alignment: usize) -> &mut Self { self.per_growable_ptr_alignment = ptr_alignment; self } /// Sets a pool capacity used for every pool reallocation. Note that with `overgrow` /// enabled it is possible for the pool to grow beyond this capacity. /// If set to zero the pool will only allocate a [`Growable`] on an explicit allocation request. /// /// [`Growable`]: struct.Growable.html pub fn with_capacity(&mut self, capacity: usize) -> &mut Self { self.len = capacity; self } /// Creates a new [`GrowablePool`] using this builder. /// /// [`GrowablePool`]: struct.GrowablePool.html pub fn build(&self) -> GrowablePool { let vec = { let default = Growable::with_capacity(self.per_growable_len, self.per_growable_ptr_alignment); let mut vec = VecDeque::with_capacity(self.len); vec.resize(self.len, default); vec }; GrowablePool { len: self.len, per_growable_len: self.per_growable_len, per_growable_ptr_alignment: self.per_growable_ptr_alignment, overgrow: self.overgrow, vec, } } } /// A pool of [`Growable`] objects. Unlike a typical Arena-based allocator it probably /// will not be able to decrease a memory fragmentation or provide some strong /// guarantees about frequency of allocations in your code but instead /// can be used to reduce the total amount of allocations in an amortized way /// by reusing the same memory to store different objects. /// /// # Examples /// /// Let's start off by creating a default [`GrowablePool`]. /// /// ``` /// # use growable::*; /// // A default pool will not allocate anything just yet though. /// let mut pool = GrowablePool::default(); /// # let arr: Reusable<[u8]> = pool.allocate([1, 2, 3, 4, 5, 6]); /// # assert_eq!(&*arr, &[1, 2, 3, 4, 5, 6]); /// # pool.free(arr); /// # let arr: Reusable<[u8]> = pool.allocate([1, 2, 3]); /// # assert_eq!(&*arr, &[1, 2, 3]); /// ``` /// /// We can now use it to allocate some data and do something with it. /// /// ``` /// # use growable::*; /// # let mut pool = GrowablePool::default(); /// // Actually allocates a block capable to store at least this 6 bytes. /// let arr: Reusable<[u8]> = pool.allocate([1, 2, 3, 4, 5, 6]); /// assert_eq!(&*arr, &[1, 2, 3, 4, 5, 6]); /// # pool.free(arr); /// # let arr: Reusable<[u8]> = pool.allocate([1, 2, 3]); /// # assert_eq!(&*arr, &[1, 2, 3]); /// ``` /// /// An then return it back to the pool.. /// /// ``` /// # use growable::*; /// # let mut pool = GrowablePool::default(); /// # let arr: Reusable<[u8]> = pool.allocate([1, 2, 3, 4, 5, 6]); /// # assert_eq!(&*arr, &[1, 2, 3, 4, 5, 6]); /// pool.free(arr); /// # let arr: Reusable<[u8]> = pool.allocate([1, 2, 3]); /// # assert_eq!(&*arr, &[1, 2, 3]); /// ``` /// /// .. and reuse the same heap to store something else. /// /// ``` /// # use growable::*; /// # let mut pool = GrowablePool::default(); /// # let arr: Reusable<[u8]> = pool.allocate([1, 2, 3, 4, 5, 6]); /// # assert_eq!(&*arr, &[1, 2, 3, 4, 5, 6]); /// # pool.free(arr); /// // No allocation is required. /// let arr: Reusable<[u8]> = pool.allocate([1, 2, 3]); /// assert_eq!(&*arr, &[1, 2, 3]); /// ``` /// /// [`Growable`]: struct.Growable.html /// [`GrowablePool`]: struct.GrowablePool.html pub struct GrowablePool { len: usize, per_growable_len: usize, per_growable_ptr_alignment: usize, overgrow: bool, vec: VecDeque<Growable>, } impl Clone for GrowablePool { fn clone(&self) -> Self { GrowablePoolBuilder::default() .with_default_capacity(self.per_growable_len) .with_default_ptr_alignment(self.per_growable_ptr_alignment) .with_capacity(self.len) .enable_overgrow(self.overgrow) .build() } } impl fmt::Debug for GrowablePool { fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result { write!(formatter, "GrowablePool {{ .. {} more allocations available .. }}", self.vec.len()) } } impl Default for GrowablePool { fn default() -> Self { GrowablePool::new() } } impl GrowablePool { /// Creates a new pool with default options. /// /// # Notes /// /// See [`GrowablePoolBuilder`] for advanced configuration. /// /// [`GrowablePoolBuilder`]: struct.GrowablePoolBuilder.html pub fn new() -> Self { GrowablePoolBuilder::default().build() } /// Creates a new pool builder with default options. pub fn builder() -> GrowablePoolBuilder { GrowablePoolBuilder::default() } /// Returns true if a reallocation will be needed to allocate an another one object. #[inline] pub fn is_empty(&self) -> bool { self.len() == 0 } /// Returns the current amount of allocations that this pool can provide without a reallocation. #[inline] pub fn len(&self) -> usize { self.vec.len() } /// Allocates a new [`Reusable`] from the pool. /// /// # Notes /// /// If no [`Growable`] is available for allocation, the entire pool will be reallocated. /// /// [`Growable`]: struct.Growable.html /// [`Reusable`]: struct.Reusable.html #[inline] pub fn allocate<T>(&mut self, t: T) -> Reusable<T> { match self.vec.pop_front() { Some(growable) => growable.consume(t), None => { let default = Growable::with_capacity(self.per_growable_len, self.per_growable_ptr_alignment); self.vec.resize(cmp::max(self.len, 1), default); self.allocate(t) }, } } /// Returns the [`Reusable`] back to the pool, marking it /// available for a next allocation. /// /// # Notes /// /// With overgrow disabled the [`Growable`] might be dropped entirely if /// there is not enough free space available in the pool. /// /// [`Growable`]: struct.Growable.html /// [`Reusable`]: struct.Reusable.html #[inline] pub fn free<T>(&mut self, t: Reusable<T>) where T: ?Sized, { if !self.overgrow && self.vec.len() >= self.len { return; } self.vec.push_front(Reusable::free(t)); } } /// A chunk of the heap memory that can be assigned with an arbitrary type. /// /// # Examples /// /// First, let's spawn a new [`Growable`]. In this case no allocation will be performed. /// /// ``` /// # use growable::*; /// let growable = Growable::new(); /// # let arr: Reusable<[char; 3]> = growable.consume(['f', 'o', 'o']); /// # assert_eq!(&*arr, &['f', 'o', 'o']); /// # let growable = Reusable::free(arr); /// # let arr: Reusable<[char; 6]> = growable.consume(['f', 'o', 'o', 'b', 'a', 'r']); /// # assert_eq!(&*arr, &['f', 'o', 'o', 'b', 'a', 'r']); /// ``` /// /// Now we can assign some data to it. /// /// ``` /// # use growable::*; /// # let growable = Growable::new(); /// let arr: Reusable<[char; 3]> = growable.consume(['f', 'o', 'o']); /// assert_eq!(&*arr, &['f', 'o', 'o']); /// # let growable = Reusable::free(arr); /// # let arr: Reusable<[char; 6]> = growable.consume(['f', 'o', 'o', 'b', 'a', 'r']); /// # assert_eq!(&*arr, &['f', 'o', 'o', 'b', 'a', 'r']); /// ``` /// /// No longer wanted data can be then freed on demand, fetching Growable back. /// Then it might be assigned with some data again and so on. /// /// ``` /// # use growable::*; /// # let growable = Growable::new(); /// # let arr: Reusable<[char; 3]> = growable.consume(['f', 'o', 'o']); /// # assert_eq!(&*arr, &['f', 'o', 'o']); /// let growable = Reusable::free(arr); /// let arr: Reusable<[char; 6]> = growable.consume(['f', 'o', 'o', 'b', 'a', 'r']); /// assert_eq!(&*arr, &['f', 'o', 'o', 'b', 'a', 'r']); /// ``` /// /// [`Growable`]: struct.Growable.html pub struct Growable { len: usize, ptr_alignment: usize, ptr: NonNull<u8>, } unsafe impl Send for Growable {} unsafe impl Sync for Growable {} impl Clone for Growable { #[inline] fn clone(&self) -> Self { Self::with_capacity(self.len, self.ptr_alignment) } } impl fmt::Pointer for Growable { fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result { fmt::Pointer::fmt(&self.ptr, formatter) } } impl fmt::Debug for Growable { fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result { match self.len { 0 => write!(formatter, "Growable::None"), _ => { write!( formatter, "Growable::Some<len = {:?}, align = {:?}>({:p})", self.len, self.ptr_alignment, self.ptr ) }, } } } impl Default for Growable { #[inline] fn default() -> Self { Self::new() } } impl Drop for Growable { fn drop(&mut self) { if self.len != 0 { unsafe { Global.deallocate(self.ptr, Layout::from_size_align_unchecked(self.len, self.ptr_alignment)); } } } } impl Growable { /// Returns a new instance of `Growable` but does not allocate any memory on the heap yet. /// /// # Examples /// /// ``` /// # use growable::*; /// let _ = Growable::new(); /// ``` /// /// [`Growable`]: struct.Growable.html #[inline] pub fn new() -> Self { Self::with_capacity(0, 1) } /// Returns a new instance of `Growable` with memory already allocated on the heap suitable to /// store an instance of a given type T. /// /// # Examples /// /// ``` /// # use growable::*; /// struct Foo { /// a: u8, /// b: usize, /// c: (), /// } /// let _ = Growable::with_capacity_for_type::<Foo>(); /// ``` /// /// [`Growable`]: struct.Growable.html #[inline] pub fn with_capacity_for_type<T>() -> Self { Self::with_capacity(mem::size_of::<T>(), mem::align_of::<T>()) } /// Returns a new instance of `Growable` with memory already allocated on the heap. /// /// # Panics /// /// * `ptr_alignment` is not a power of two. /// * `len` overflows after being rounded up to the nearest multiple of the alignment. /// /// # Notes /// /// Might trigger `alloc_error` handler. /// /// # Examples /// /// ``` /// # use growable::*; /// let _ = Growable::with_capacity(256, 16); /// ``` /// /// [`Growable`]: struct.Growable.html #[inline] pub fn with_capacity(len: usize, ptr_alignment: usize) -> Self { let ptr = if len != 0 { let layout = Layout::from_size_align(len, ptr_alignment).expect("Growable::with_capacity: invalid layout"); Global.allocate(layout).map_or_else(|_| handle_alloc_error(layout), |ptr| ptr.as_non_null_ptr()) } else { assert!(ptr_alignment.is_power_of_two(), "Growable::with_capacity: alignment must be a power of two"); NonNull::<u8>::dangling() }; Growable { len, ptr_alignment, ptr, } } /// Returns true if no memory has been allocated yet. #[inline] pub fn is_empty(&self) -> bool { self.len() == 0 } /// Returns the amount of memory allocated by this `Growable`. /// /// [`Growable`]: struct.Growable.html #[inline] pub fn len(&self) -> usize { self.len } /// Returns the alignment. #[inline] pub fn alignment(&self) -> usize { self.ptr_alignment } /// Places an instance of `T` on the heap, an actual (re)allocation will be performed /// only if there is not enough space or the pointer alignment is invalid. /// /// # Notes /// /// Might trigger `alloc_error` handler. /// /// # Examples /// /// ``` /// # use growable::*; /// let growable = Growable::with_capacity(128, 8); /// let num = growable.consume(0usize); /// assert_eq!(*num, 0usize); /// ``` #[inline] pub fn consume<T>(mut self, t: T) -> Reusable<T> { self.grow(mem::size_of::<T>(), mem::align_of::<T>()); self.copy(t) } fn grow(&mut self, len: usize, ptr_alignment: usize) { // NB: len is valid or zero, ptr_alignment is always valid. if self.len == 0 { // Growing from zero length can be done with Growable::with_capacity call. *self = Self::with_capacity(len, ptr_alignment); return; } if self.len >= len && self.ptr_alignment >= ptr_alignment { // No allocation is required. return; } let len = cmp::max(self.len, len); // NB: Could be a bug if there is a way to define a ZST with align_of() greater than one?! assert_ne!(len, 0, "Growable::grow: realloc to zero"); unsafe { let layout_curr = Layout::from_size_align_unchecked(self.len, self.ptr_alignment); let layout = Layout::from_size_align_unchecked(len, ptr_alignment); // If the alignment is the same we can try to grow in place. let ptr = if layout.align() == layout_curr.align() { Global.grow(self.ptr, layout_curr, layout) } else { // Oops, a reallocation is required. Global.deallocate(self.ptr, layout_curr); Global.allocate(layout) } .map_or_else(|_| handle_alloc_error(layout), |ptr| ptr.as_non_null_ptr()); self.len = len; self.ptr_alignment = ptr_alignment; self.ptr = ptr; } } fn copy<T>(self, t: T) -> Reusable<T> { // NB: len is at least equal to size_of::<T>(), ptr_alignment is at least equal to align_of::<T>(). let result = unsafe { let ptr_raw = self.ptr.cast::<T>().as_ptr(); ptr_raw.write(t); let ptr = NonNull::new_unchecked(ptr_raw); Reusable { len: self.len, ptr_alignment: self.ptr_alignment, ptr, } }; mem::forget(self); result } } /// A reusable box. It behaves just like the default [`Box`] (and it WILL free memory on drop) /// but it is also possible to free it manually, fetching a [`Growable`] back. /// /// [`Box`]: https://doc.rust-lang.org/std/boxed/struct.Box.html /// [`Growable`]: struct.Growable.html pub struct Reusable<T: ?Sized> { len: usize, ptr_alignment: usize, ptr: NonNull<T>, } unsafe impl<T> Send for Reusable<T> where T: Send + ?Sized {} unsafe impl<T> Sync for Reusable<T> where T: Sync + ?Sized {} impl<T> Clone for Reusable<T> where T: ?Sized + Clone, { fn clone(&self) -> Self { let growable = Growable::with_capacity_for_type::<T>(); growable.consume(T::clone(&*self)) } } impl<T: ?Sized> ops::Deref for Reusable<T> { type Target = T; fn deref(&self) -> &Self::Target { unsafe { self.ptr.as_ref() } } } impl<T: ?Sized> ops::DerefMut for Reusable<T> { fn deref_mut(&mut self) -> &mut Self::Target { unsafe { self.ptr.as_mut() } } } impl<T> fmt::Pointer for Reusable<T> where T: ?Sized, { fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result { fmt::Pointer::fmt(&self.ptr, formatter) } } impl<T> fmt::Debug for Reusable<T> where T: ?Sized + fmt::Debug, { fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result { let t: &T = &*self; fmt::Debug::fmt(t, formatter) } } impl<T: ?Sized> Drop for Reusable<T> { fn drop(&mut self) { self.free_in_place(); } } impl<T, U> CoerceUnsized<Reusable<U>> for Reusable<T> where T: ?Sized + Unsize<U>, U: ?Sized, { } impl<T: ?Sized> Reusable<T> { /// Drops the value and returns the memory back as a [`Growable`]. /// /// [`Growable`]: struct.Growable.html #[inline] pub fn free(mut this: Self) -> Growable { let growable = this.free_in_place(); mem::forget(this); growable } /// Moves the value out of this [`Reusable`] without dropping it and then /// returns it back with [`Growable`]. /// /// [`Growable`]: struct.Growable.html /// [`Reusable`]: struct.Reusable.html #[inline] pub fn free_move(this: Self) -> (T, Growable) where T: Sized, { unsafe { let t = ptr::read(this.ptr.as_ptr()); let growable = Growable { len: this.len, ptr_alignment: this.ptr_alignment, ptr: this.ptr.cast(), }; mem::forget(this); (t, growable) } } #[inline] fn free_in_place(&mut self) -> Growable { unsafe { ptr::drop_in_place(self.ptr.as_ptr()); Growable { len: self.len, ptr_alignment: self.ptr_alignment, ptr: self.ptr.cast(), } } } } /// Replaces the value, dropping the old one but not the memory associated with it. /// /// # Notes /// /// Has the same result as a manual call to [`Reusable::free`] and then [`Growable::consume`]. /// /// [`Reusable::free`]: struct.Reusable.html#method.free /// [`Growable::consume`]: struct.Growable.html#method.consume #[inline] pub fn replace<T, U>(this: Reusable<T>, u: U) -> Reusable<U> where T: ?Sized, { Reusable::free(this).consume(u) }