// Formatting library for C++ - the core API for char/UTF-8 // // Copyright (c) 2012 - present, Victor Zverovich // All rights reserved. // // For the license information refer to format.h. #ifndef FMT_CORE_H_ #define FMT_CORE_H_ #include // std::FILE #include #include #include #include #include // The fmt library version in the form major * 10000 + minor * 100 + patch. #define FMT_VERSION 80001 #ifdef __clang__ # define FMT_CLANG_VERSION (__clang_major__ * 100 + __clang_minor__) #else # define FMT_CLANG_VERSION 0 #endif #if defined(__GNUC__) && !defined(__clang__) && !defined(__INTEL_COMPILER) # define FMT_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) # define FMT_GCC_PRAGMA(arg) _Pragma(arg) #else # define FMT_GCC_VERSION 0 # define FMT_GCC_PRAGMA(arg) #endif #if __cplusplus >= 201103L || defined(__GXX_EXPERIMENTAL_CXX0X__) # define FMT_HAS_GXX_CXX11 FMT_GCC_VERSION #else # define FMT_HAS_GXX_CXX11 0 #endif #if defined(__INTEL_COMPILER) # define FMT_ICC_VERSION __INTEL_COMPILER #else # define FMT_ICC_VERSION 0 #endif #ifdef __NVCC__ # define FMT_NVCC __NVCC__ #else # define FMT_NVCC 0 #endif #ifdef _MSC_VER # define FMT_MSC_VER _MSC_VER # define FMT_MSC_WARNING(...) __pragma(warning(__VA_ARGS__)) #else # define FMT_MSC_VER 0 # define FMT_MSC_WARNING(...) #endif #ifdef __has_feature # define FMT_HAS_FEATURE(x) __has_feature(x) #else # define FMT_HAS_FEATURE(x) 0 #endif #if defined(__has_include) && \ (!defined(__INTELLISENSE__) || FMT_MSC_VER > 1900) && \ (!FMT_ICC_VERSION || FMT_ICC_VERSION >= 1600) # define FMT_HAS_INCLUDE(x) __has_include(x) #else # define FMT_HAS_INCLUDE(x) 0 #endif #ifdef __has_cpp_attribute # define FMT_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x) #else # define FMT_HAS_CPP_ATTRIBUTE(x) 0 #endif #define FMT_HAS_CPP14_ATTRIBUTE(attribute) \ (__cplusplus >= 201402L && FMT_HAS_CPP_ATTRIBUTE(attribute)) #define FMT_HAS_CPP17_ATTRIBUTE(attribute) \ (__cplusplus >= 201703L && FMT_HAS_CPP_ATTRIBUTE(attribute)) // Check if relaxed C++14 constexpr is supported. // GCC doesn't allow throw in constexpr until version 6 (bug 67371). #ifndef FMT_USE_CONSTEXPR # define FMT_USE_CONSTEXPR \ (FMT_HAS_FEATURE(cxx_relaxed_constexpr) || FMT_MSC_VER >= 1910 || \ (FMT_GCC_VERSION >= 600 && __cplusplus >= 201402L)) && \ !FMT_NVCC && !FMT_ICC_VERSION #endif #if FMT_USE_CONSTEXPR # define FMT_CONSTEXPR constexpr # define FMT_CONSTEXPR_DECL constexpr #else # define FMT_CONSTEXPR # define FMT_CONSTEXPR_DECL #endif // Check if constexpr std::char_traits<>::compare,length is supported. #if defined(__GLIBCXX__) # if __cplusplus >= 201703L && defined(_GLIBCXX_RELEASE) && \ _GLIBCXX_RELEASE >= 7 // GCC 7+ libstdc++ has _GLIBCXX_RELEASE. # define FMT_CONSTEXPR_CHAR_TRAITS constexpr # endif #elif defined(_LIBCPP_VERSION) && __cplusplus >= 201703L && \ _LIBCPP_VERSION >= 4000 # define FMT_CONSTEXPR_CHAR_TRAITS constexpr #elif FMT_MSC_VER >= 1914 && _MSVC_LANG >= 201703L # define FMT_CONSTEXPR_CHAR_TRAITS constexpr #endif #ifndef FMT_CONSTEXPR_CHAR_TRAITS # define FMT_CONSTEXPR_CHAR_TRAITS #endif #ifndef FMT_OVERRIDE # if FMT_HAS_FEATURE(cxx_override_control) || \ (FMT_GCC_VERSION >= 408 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1900 # define FMT_OVERRIDE override # else # define FMT_OVERRIDE # endif #endif // Check if exceptions are disabled. #ifndef FMT_EXCEPTIONS # if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || \ FMT_MSC_VER && !_HAS_EXCEPTIONS # define FMT_EXCEPTIONS 0 # else # define FMT_EXCEPTIONS 1 # endif #endif // Define FMT_USE_NOEXCEPT to make fmt use noexcept (C++11 feature). #ifndef FMT_USE_NOEXCEPT # define FMT_USE_NOEXCEPT 0 #endif #if FMT_USE_NOEXCEPT || FMT_HAS_FEATURE(cxx_noexcept) || \ (FMT_GCC_VERSION >= 408 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1900 # define FMT_DETECTED_NOEXCEPT noexcept # define FMT_HAS_CXX11_NOEXCEPT 1 #else # define FMT_DETECTED_NOEXCEPT throw() # define FMT_HAS_CXX11_NOEXCEPT 0 #endif #ifndef FMT_NOEXCEPT # if FMT_EXCEPTIONS || FMT_HAS_CXX11_NOEXCEPT # define FMT_NOEXCEPT FMT_DETECTED_NOEXCEPT # else # define FMT_NOEXCEPT # endif #endif // [[noreturn]] is disabled on MSVC and NVCC because of bogus unreachable code // warnings. #if FMT_EXCEPTIONS && FMT_HAS_CPP_ATTRIBUTE(noreturn) && !FMT_MSC_VER && \ !FMT_NVCC # define FMT_NORETURN [[noreturn]] #else # define FMT_NORETURN #endif #ifndef FMT_MAYBE_UNUSED # if FMT_HAS_CPP17_ATTRIBUTE(maybe_unused) # define FMT_MAYBE_UNUSED [[maybe_unused]] # else # define FMT_MAYBE_UNUSED # endif #endif #if __cplusplus == 201103L || __cplusplus == 201402L # if defined(__INTEL_COMPILER) || defined(__PGI) # define FMT_FALLTHROUGH # elif defined(__clang__) # define FMT_FALLTHROUGH [[clang::fallthrough]] # elif FMT_GCC_VERSION >= 700 && \ (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= 520) # define FMT_FALLTHROUGH [[gnu::fallthrough]] # else # define FMT_FALLTHROUGH # endif #elif FMT_HAS_CPP17_ATTRIBUTE(fallthrough) || \ (defined(_MSVC_LANG) && _MSVC_LANG >= 201703L) # define FMT_FALLTHROUGH [[fallthrough]] #else # define FMT_FALLTHROUGH #endif #ifndef FMT_USE_FLOAT # define FMT_USE_FLOAT 1 #endif #ifndef FMT_USE_DOUBLE # define FMT_USE_DOUBLE 1 #endif #ifndef FMT_USE_LONG_DOUBLE # define FMT_USE_LONG_DOUBLE 1 #endif #ifndef FMT_INLINE # if FMT_GCC_VERSION || FMT_CLANG_VERSION # define FMT_INLINE inline __attribute__((always_inline)) # else # define FMT_INLINE inline # endif #endif #ifndef FMT_USE_INLINE_NAMESPACES # if FMT_HAS_FEATURE(cxx_inline_namespaces) || FMT_GCC_VERSION >= 404 || \ (FMT_MSC_VER >= 1900 && (!defined(_MANAGED) || !_MANAGED)) # define FMT_USE_INLINE_NAMESPACES 1 # else # define FMT_USE_INLINE_NAMESPACES 0 # endif #endif #ifndef FMT_BEGIN_NAMESPACE # if FMT_USE_INLINE_NAMESPACES # define FMT_INLINE_NAMESPACE inline namespace # define FMT_END_NAMESPACE \ } \ } # else # define FMT_INLINE_NAMESPACE namespace # define FMT_END_NAMESPACE \ } \ using namespace v8; \ } # endif # define FMT_BEGIN_NAMESPACE \ namespace fmt { \ FMT_INLINE_NAMESPACE v8 { #endif #ifndef FMT_MODULE_EXPORT # define FMT_MODULE_EXPORT # define FMT_MODULE_EXPORT_BEGIN # define FMT_MODULE_EXPORT_END # define FMT_BEGIN_DETAIL_NAMESPACE namespace detail { # define FMT_END_DETAIL_NAMESPACE } #endif #if !defined(FMT_HEADER_ONLY) && defined(_WIN32) # define FMT_CLASS_API FMT_MSC_WARNING(suppress : 4275) # ifdef FMT_EXPORT # define FMT_API __declspec(dllexport) # elif defined(FMT_SHARED) # define FMT_API __declspec(dllimport) # endif #else # define FMT_CLASS_API # if defined(FMT_EXPORT) || defined(FMT_SHARED) # if defined(__GNUC__) || defined(__clang__) # define FMT_API __attribute__((visibility("default"))) # endif # endif #endif #ifndef FMT_API # define FMT_API #endif #if FMT_GCC_VERSION # define FMT_GCC_VISIBILITY_HIDDEN __attribute__((visibility("hidden"))) #else # define FMT_GCC_VISIBILITY_HIDDEN #endif // libc++ supports string_view in pre-c++17. #if (FMT_HAS_INCLUDE() && \ (__cplusplus > 201402L || defined(_LIBCPP_VERSION))) || \ (defined(_MSVC_LANG) && _MSVC_LANG > 201402L && _MSC_VER >= 1910) # include # define FMT_USE_STRING_VIEW #elif FMT_HAS_INCLUDE("experimental/string_view") && __cplusplus >= 201402L # include # define FMT_USE_EXPERIMENTAL_STRING_VIEW #endif #ifndef FMT_UNICODE # define FMT_UNICODE !FMT_MSC_VER #endif #ifndef FMT_CONSTEVAL # if ((FMT_GCC_VERSION >= 1000 || FMT_CLANG_VERSION >= 1101) && \ __cplusplus > 201703L) || \ (defined(__cpp_consteval) && \ !FMT_MSC_VER) // consteval is broken in MSVC. # define FMT_CONSTEVAL consteval # define FMT_HAS_CONSTEVAL # else # define FMT_CONSTEVAL # endif #endif #ifndef FMT_USE_NONTYPE_TEMPLATE_PARAMETERS # if defined(__cpp_nontype_template_args) && \ ((FMT_GCC_VERSION >= 903 && __cplusplus >= 201709L) || \ __cpp_nontype_template_args >= 201911L) # define FMT_USE_NONTYPE_TEMPLATE_PARAMETERS 1 # else # define FMT_USE_NONTYPE_TEMPLATE_PARAMETERS 0 # endif #endif // Enable minimal optimizations for more compact code in debug mode. FMT_GCC_PRAGMA("GCC push_options") #ifndef __OPTIMIZE__ FMT_GCC_PRAGMA("GCC optimize(\"Og\")") #endif FMT_BEGIN_NAMESPACE FMT_MODULE_EXPORT_BEGIN // Implementations of enable_if_t and other metafunctions for older systems. template using enable_if_t = typename std::enable_if::type; template using conditional_t = typename std::conditional::type; template using bool_constant = std::integral_constant; template using remove_reference_t = typename std::remove_reference::type; template using remove_cvref_t = typename std::remove_cv>::type; template struct type_identity { using type = T; }; template using type_identity_t = typename type_identity::type; struct monostate { constexpr monostate() {} }; // An enable_if helper to be used in template parameters which results in much // shorter symbols: https://godbolt.org/z/sWw4vP. Extra parentheses are needed // to workaround a bug in MSVC 2019 (see #1140 and #1186). #ifdef FMT_DOC # define FMT_ENABLE_IF(...) #else # define FMT_ENABLE_IF(...) enable_if_t<(__VA_ARGS__), int> = 0 #endif FMT_BEGIN_DETAIL_NAMESPACE // Suppress "unused variable" warnings with the method described in // https://herbsutter.com/2009/10/18/mailbag-shutting-up-compiler-warnings/. // (void)var does not work on many Intel compilers. template FMT_CONSTEXPR void ignore_unused(const T&...) {} constexpr FMT_INLINE auto is_constant_evaluated() FMT_NOEXCEPT -> bool { #ifdef __cpp_lib_is_constant_evaluated return std::is_constant_evaluated(); #else return false; #endif } // A function to suppress "conditional expression is constant" warnings. template constexpr auto const_check(T value) -> T { return value; } FMT_NORETURN FMT_API void assert_fail(const char* file, int line, const char* message); #ifndef FMT_ASSERT # ifdef NDEBUG // FMT_ASSERT is not empty to avoid -Werror=empty-body. # define FMT_ASSERT(condition, message) \ ::fmt::detail::ignore_unused((condition), (message)) # else # define FMT_ASSERT(condition, message) \ ((condition) /* void() fails with -Winvalid-constexpr on clang 4.0.1 */ \ ? (void)0 \ : ::fmt::detail::assert_fail(__FILE__, __LINE__, (message))) # endif #endif #if defined(FMT_USE_STRING_VIEW) template using std_string_view = std::basic_string_view; #elif defined(FMT_USE_EXPERIMENTAL_STRING_VIEW) template using std_string_view = std::experimental::basic_string_view; #else template struct std_string_view {}; #endif #ifdef FMT_USE_INT128 // Do nothing. #elif defined(__SIZEOF_INT128__) && !FMT_NVCC && \ !(FMT_CLANG_VERSION && FMT_MSC_VER) # define FMT_USE_INT128 1 using int128_t = __int128_t; using uint128_t = __uint128_t; template inline auto convert_for_visit(T value) -> T { return value; } #else # define FMT_USE_INT128 0 #endif #if !FMT_USE_INT128 enum class int128_t {}; enum class uint128_t {}; // Reduce template instantiations. template inline auto convert_for_visit(T) -> monostate { return {}; } #endif // Casts a nonnegative integer to unsigned. template FMT_CONSTEXPR auto to_unsigned(Int value) -> typename std::make_unsigned::type { FMT_ASSERT(value >= 0, "negative value"); return static_cast::type>(value); } FMT_MSC_WARNING(suppress : 4566) constexpr unsigned char micro[] = "\u00B5"; constexpr auto is_utf8() -> bool { // Avoid buggy sign extensions in MSVC's constant evaluation mode. // https://developercommunity.visualstudio.com/t/C-difference-in-behavior-for-unsigned/1233612 using uchar = unsigned char; return FMT_UNICODE || (sizeof(micro) == 3 && uchar(micro[0]) == 0xC2 && uchar(micro[1]) == 0xB5); } FMT_END_DETAIL_NAMESPACE /** An implementation of ``std::basic_string_view`` for pre-C++17. It provides a subset of the API. ``fmt::basic_string_view`` is used for format strings even if ``std::string_view`` is available to prevent issues when a library is compiled with a different ``-std`` option than the client code (which is not recommended). */ template class basic_string_view { private: const Char* data_; size_t size_; public: using value_type = Char; using iterator = const Char*; constexpr basic_string_view() FMT_NOEXCEPT : data_(nullptr), size_(0) {} /** Constructs a string reference object from a C string and a size. */ constexpr basic_string_view(const Char* s, size_t count) FMT_NOEXCEPT : data_(s), size_(count) {} /** \rst Constructs a string reference object from a C string computing the size with ``std::char_traits::length``. \endrst */ FMT_CONSTEXPR_CHAR_TRAITS FMT_INLINE basic_string_view(const Char* s) : data_(s) { if (detail::const_check(std::is_same::value && !detail::is_constant_evaluated())) size_ = std::strlen(reinterpret_cast(s)); else size_ = std::char_traits::length(s); } /** Constructs a string reference from a ``std::basic_string`` object. */ template FMT_CONSTEXPR basic_string_view( const std::basic_string& s) FMT_NOEXCEPT : data_(s.data()), size_(s.size()) {} template >::value)> FMT_CONSTEXPR basic_string_view(S s) FMT_NOEXCEPT : data_(s.data()), size_(s.size()) {} /** Returns a pointer to the string data. */ constexpr auto data() const -> const Char* { return data_; } /** Returns the string size. */ constexpr auto size() const -> size_t { return size_; } constexpr auto begin() const -> iterator { return data_; } constexpr auto end() const -> iterator { return data_ + size_; } constexpr auto operator[](size_t pos) const -> const Char& { return data_[pos]; } FMT_CONSTEXPR void remove_prefix(size_t n) { data_ += n; size_ -= n; } // Lexicographically compare this string reference to other. FMT_CONSTEXPR_CHAR_TRAITS auto compare(basic_string_view other) const -> int { size_t str_size = size_ < other.size_ ? size_ : other.size_; int result = std::char_traits::compare(data_, other.data_, str_size); if (result == 0) result = size_ == other.size_ ? 0 : (size_ < other.size_ ? -1 : 1); return result; } FMT_CONSTEXPR_CHAR_TRAITS friend auto operator==(basic_string_view lhs, basic_string_view rhs) -> bool { return lhs.compare(rhs) == 0; } friend auto operator!=(basic_string_view lhs, basic_string_view rhs) -> bool { return lhs.compare(rhs) != 0; } friend auto operator<(basic_string_view lhs, basic_string_view rhs) -> bool { return lhs.compare(rhs) < 0; } friend auto operator<=(basic_string_view lhs, basic_string_view rhs) -> bool { return lhs.compare(rhs) <= 0; } friend auto operator>(basic_string_view lhs, basic_string_view rhs) -> bool { return lhs.compare(rhs) > 0; } friend auto operator>=(basic_string_view lhs, basic_string_view rhs) -> bool { return lhs.compare(rhs) >= 0; } }; using string_view = basic_string_view; /** Specifies if ``T`` is a character type. Can be specialized by users. */ template struct is_char : std::false_type {}; template <> struct is_char : std::true_type {}; // Returns a string view of `s`. template ::value)> FMT_INLINE auto to_string_view(const Char* s) -> basic_string_view { return s; } template inline auto to_string_view(const std::basic_string& s) -> basic_string_view { return s; } template constexpr auto to_string_view(basic_string_view s) -> basic_string_view { return s; } template >::value)> inline auto to_string_view(detail::std_string_view s) -> basic_string_view { return s; } // A base class for compile-time strings. It is defined in the fmt namespace to // make formatting functions visible via ADL, e.g. format(FMT_STRING("{}"), 42). struct compile_string {}; template struct is_compile_string : std::is_base_of {}; template ::value)> constexpr auto to_string_view(const S& s) -> basic_string_view { return basic_string_view(s); } FMT_BEGIN_DETAIL_NAMESPACE void to_string_view(...); using fmt::v8::to_string_view; // Specifies whether S is a string type convertible to fmt::basic_string_view. // It should be a constexpr function but MSVC 2017 fails to compile it in // enable_if and MSVC 2015 fails to compile it as an alias template. template struct is_string : std::is_class()))> { }; template struct char_t_impl {}; template struct char_t_impl::value>> { using result = decltype(to_string_view(std::declval())); using type = typename result::value_type; }; // Reports a compile-time error if S is not a valid format string. template ::value)> FMT_INLINE void check_format_string(const S&) { #ifdef FMT_ENFORCE_COMPILE_STRING static_assert(is_compile_string::value, "FMT_ENFORCE_COMPILE_STRING requires all format strings to use " "FMT_STRING."); #endif } template ::value)> void check_format_string(S); struct error_handler { constexpr error_handler() = default; constexpr error_handler(const error_handler&) = default; // This function is intentionally not constexpr to give a compile-time error. FMT_NORETURN FMT_API void on_error(const char* message); }; FMT_END_DETAIL_NAMESPACE /** String's character type. */ template using char_t = typename detail::char_t_impl::type; /** \rst Parsing context consisting of a format string range being parsed and an argument counter for automatic indexing. You can use the ``format_parse_context`` type alias for ``char`` instead. \endrst */ template class basic_format_parse_context : private ErrorHandler { private: basic_string_view format_str_; int next_arg_id_; public: using char_type = Char; using iterator = typename basic_string_view::iterator; explicit constexpr basic_format_parse_context( basic_string_view format_str, ErrorHandler eh = {}, int next_arg_id = 0) : ErrorHandler(eh), format_str_(format_str), next_arg_id_(next_arg_id) {} /** Returns an iterator to the beginning of the format string range being parsed. */ constexpr auto begin() const FMT_NOEXCEPT -> iterator { return format_str_.begin(); } /** Returns an iterator past the end of the format string range being parsed. */ constexpr auto end() const FMT_NOEXCEPT -> iterator { return format_str_.end(); } /** Advances the begin iterator to ``it``. */ FMT_CONSTEXPR void advance_to(iterator it) { format_str_.remove_prefix(detail::to_unsigned(it - begin())); } /** Reports an error if using the manual argument indexing; otherwise returns the next argument index and switches to the automatic indexing. */ FMT_CONSTEXPR auto next_arg_id() -> int { // Don't check if the argument id is valid to avoid overhead and because it // will be checked during formatting anyway. if (next_arg_id_ >= 0) return next_arg_id_++; on_error("cannot switch from manual to automatic argument indexing"); return 0; } /** Reports an error if using the automatic argument indexing; otherwise switches to the manual indexing. */ FMT_CONSTEXPR void check_arg_id(int) { if (next_arg_id_ > 0) on_error("cannot switch from automatic to manual argument indexing"); else next_arg_id_ = -1; } FMT_CONSTEXPR void check_arg_id(basic_string_view) {} FMT_CONSTEXPR void on_error(const char* message) { ErrorHandler::on_error(message); } constexpr auto error_handler() const -> ErrorHandler { return *this; } }; using format_parse_context = basic_format_parse_context; template class basic_format_arg; template class basic_format_args; template class dynamic_format_arg_store; // A formatter for objects of type T. template struct formatter { // A deleted default constructor indicates a disabled formatter. formatter() = delete; }; // Specifies if T has an enabled formatter specialization. A type can be // formattable even if it doesn't have a formatter e.g. via a conversion. template using has_formatter = std::is_constructible>; // Checks whether T is a container with contiguous storage. template struct is_contiguous : std::false_type {}; template struct is_contiguous> : std::true_type {}; class appender; FMT_BEGIN_DETAIL_NAMESPACE template constexpr auto is_const_formattable_impl(T*) -> decltype(typename Context::template formatter_type().format( std::declval(), std::declval()), true) { return true; } template constexpr auto is_const_formattable_impl(...) -> bool { return false; } template constexpr auto is_const_formattable() -> bool { return is_const_formattable_impl(static_cast(nullptr)); } // Extracts a reference to the container from back_insert_iterator. template inline auto get_container(std::back_insert_iterator it) -> Container& { using bi_iterator = std::back_insert_iterator; struct accessor : bi_iterator { accessor(bi_iterator iter) : bi_iterator(iter) {} using bi_iterator::container; }; return *accessor(it).container; } template FMT_CONSTEXPR auto copy_str(InputIt begin, InputIt end, OutputIt out) -> OutputIt { while (begin != end) *out++ = static_cast(*begin++); return out; } template ::value)> FMT_CONSTEXPR auto copy_str(const Char* begin, const Char* end, Char* out) -> Char* { if (is_constant_evaluated()) return copy_str(begin, end, out); auto size = to_unsigned(end - begin); memcpy(out, begin, size); return out + size; } /** \rst A contiguous memory buffer with an optional growing ability. It is an internal class and shouldn't be used directly, only via `~fmt::basic_memory_buffer`. \endrst */ template class buffer { private: T* ptr_; size_t size_; size_t capacity_; protected: // Don't initialize ptr_ since it is not accessed to save a few cycles. FMT_MSC_WARNING(suppress : 26495) buffer(size_t sz) FMT_NOEXCEPT : size_(sz), capacity_(sz) {} buffer(T* p = nullptr, size_t sz = 0, size_t cap = 0) FMT_NOEXCEPT : ptr_(p), size_(sz), capacity_(cap) {} ~buffer() = default; buffer(buffer&&) = default; /** Sets the buffer data and capacity. */ void set(T* buf_data, size_t buf_capacity) FMT_NOEXCEPT { ptr_ = buf_data; capacity_ = buf_capacity; } /** Increases the buffer capacity to hold at least *capacity* elements. */ virtual void grow(size_t capacity) = 0; public: using value_type = T; using const_reference = const T&; buffer(const buffer&) = delete; void operator=(const buffer&) = delete; auto begin() FMT_NOEXCEPT -> T* { return ptr_; } auto end() FMT_NOEXCEPT -> T* { return ptr_ + size_; } auto begin() const FMT_NOEXCEPT -> const T* { return ptr_; } auto end() const FMT_NOEXCEPT -> const T* { return ptr_ + size_; } /** Returns the size of this buffer. */ auto size() const FMT_NOEXCEPT -> size_t { return size_; } /** Returns the capacity of this buffer. */ auto capacity() const FMT_NOEXCEPT -> size_t { return capacity_; } /** Returns a pointer to the buffer data. */ auto data() FMT_NOEXCEPT -> T* { return ptr_; } /** Returns a pointer to the buffer data. */ auto data() const FMT_NOEXCEPT -> const T* { return ptr_; } /** Clears this buffer. */ void clear() { size_ = 0; } // Tries resizing the buffer to contain *count* elements. If T is a POD type // the new elements may not be initialized. void try_resize(size_t count) { try_reserve(count); size_ = count <= capacity_ ? count : capacity_; } // Tries increasing the buffer capacity to *new_capacity*. It can increase the // capacity by a smaller amount than requested but guarantees there is space // for at least one additional element either by increasing the capacity or by // flushing the buffer if it is full. void try_reserve(size_t new_capacity) { if (new_capacity > capacity_) grow(new_capacity); } void push_back(const T& value) { try_reserve(size_ + 1); ptr_[size_++] = value; } /** Appends data to the end of the buffer. */ template void append(const U* begin, const U* end); template auto operator[](I index) -> T& { return ptr_[index]; } template auto operator[](I index) const -> const T& { return ptr_[index]; } }; struct buffer_traits { explicit buffer_traits(size_t) {} auto count() const -> size_t { return 0; } auto limit(size_t size) -> size_t { return size; } }; class fixed_buffer_traits { private: size_t count_ = 0; size_t limit_; public: explicit fixed_buffer_traits(size_t limit) : limit_(limit) {} auto count() const -> size_t { return count_; } auto limit(size_t size) -> size_t { size_t n = limit_ > count_ ? limit_ - count_ : 0; count_ += size; return size < n ? size : n; } }; // A buffer that writes to an output iterator when flushed. template class iterator_buffer final : public Traits, public buffer { private: OutputIt out_; enum { buffer_size = 256 }; T data_[buffer_size]; protected: void grow(size_t) final FMT_OVERRIDE { if (this->size() == buffer_size) flush(); } void flush() { auto size = this->size(); this->clear(); out_ = copy_str(data_, data_ + this->limit(size), out_); } public: explicit iterator_buffer(OutputIt out, size_t n = buffer_size) : Traits(n), buffer(data_, 0, buffer_size), out_(out) {} iterator_buffer(iterator_buffer&& other) : Traits(other), buffer(data_, 0, buffer_size), out_(other.out_) {} ~iterator_buffer() { flush(); } auto out() -> OutputIt { flush(); return out_; } auto count() const -> size_t { return Traits::count() + this->size(); } }; template class iterator_buffer final : public buffer { protected: void grow(size_t) final FMT_OVERRIDE {} public: explicit iterator_buffer(T* out, size_t = 0) : buffer(out, 0, ~size_t()) {} auto out() -> T* { return &*this->end(); } }; // A buffer that writes to a container with the contiguous storage. template class iterator_buffer, enable_if_t::value, typename Container::value_type>> final : public buffer { private: Container& container_; protected: void grow(size_t capacity) final FMT_OVERRIDE { container_.resize(capacity); this->set(&container_[0], capacity); } public: explicit iterator_buffer(Container& c) : buffer(c.size()), container_(c) {} explicit iterator_buffer(std::back_insert_iterator out, size_t = 0) : iterator_buffer(get_container(out)) {} auto out() -> std::back_insert_iterator { return std::back_inserter(container_); } }; // A buffer that counts the number of code units written discarding the output. template class counting_buffer final : public buffer { private: enum { buffer_size = 256 }; T data_[buffer_size]; size_t count_ = 0; protected: void grow(size_t) final FMT_OVERRIDE { if (this->size() != buffer_size) return; count_ += this->size(); this->clear(); } public: counting_buffer() : buffer(data_, 0, buffer_size) {} auto count() -> size_t { return count_ + this->size(); } }; template using buffer_appender = conditional_t::value, appender, std::back_insert_iterator>>; // Maps an output iterator to a buffer. template auto get_buffer(OutputIt out) -> iterator_buffer { return iterator_buffer(out); } template auto get_iterator(Buffer& buf) -> decltype(buf.out()) { return buf.out(); } template auto get_iterator(buffer& buf) -> buffer_appender { return buffer_appender(buf); } template struct fallback_formatter { fallback_formatter() = delete; }; // Specifies if T has an enabled fallback_formatter specialization. template using has_fallback_formatter = std::is_constructible>; struct view {}; template struct named_arg : view { const Char* name; const T& value; named_arg(const Char* n, const T& v) : name(n), value(v) {} }; template struct named_arg_info { const Char* name; int id; }; template struct arg_data { // args_[0].named_args points to named_args_ to avoid bloating format_args. // +1 to workaround a bug in gcc 7.5 that causes duplicated-branches warning. T args_[1 + (NUM_ARGS != 0 ? NUM_ARGS : +1)]; named_arg_info named_args_[NUM_NAMED_ARGS]; template arg_data(const U&... init) : args_{T(named_args_, NUM_NAMED_ARGS), init...} {} arg_data(const arg_data& other) = delete; auto args() const -> const T* { return args_ + 1; } auto named_args() -> named_arg_info* { return named_args_; } }; template struct arg_data { // +1 to workaround a bug in gcc 7.5 that causes duplicated-branches warning. T args_[NUM_ARGS != 0 ? NUM_ARGS : +1]; template FMT_CONSTEXPR FMT_INLINE arg_data(const U&... init) : args_{init...} {} FMT_CONSTEXPR FMT_INLINE auto args() const -> const T* { return args_; } FMT_CONSTEXPR FMT_INLINE auto named_args() -> std::nullptr_t { return nullptr; } }; template inline void init_named_args(named_arg_info*, int, int) {} template struct is_named_arg : std::false_type {}; template struct is_statically_named_arg : std::false_type {}; template struct is_named_arg> : std::true_type {}; template ::value)> void init_named_args(named_arg_info* named_args, int arg_count, int named_arg_count, const T&, const Tail&... args) { init_named_args(named_args, arg_count + 1, named_arg_count, args...); } template ::value)> void init_named_args(named_arg_info* named_args, int arg_count, int named_arg_count, const T& arg, const Tail&... args) { named_args[named_arg_count++] = {arg.name, arg_count}; init_named_args(named_args, arg_count + 1, named_arg_count, args...); } template FMT_CONSTEXPR FMT_INLINE void init_named_args(std::nullptr_t, int, int, const Args&...) {} template constexpr auto count() -> size_t { return B ? 1 : 0; } template constexpr auto count() -> size_t { return (B1 ? 1 : 0) + count(); } template constexpr auto count_named_args() -> size_t { return count::value...>(); } enum class type { none_type, // Integer types should go first, int_type, uint_type, long_long_type, ulong_long_type, int128_type, uint128_type, bool_type, char_type, last_integer_type = char_type, // followed by floating-point types. float_type, double_type, long_double_type, last_numeric_type = long_double_type, cstring_type, string_type, pointer_type, custom_type }; // Maps core type T to the corresponding type enum constant. template struct type_constant : std::integral_constant {}; #define FMT_TYPE_CONSTANT(Type, constant) \ template \ struct type_constant \ : std::integral_constant {} FMT_TYPE_CONSTANT(int, int_type); FMT_TYPE_CONSTANT(unsigned, uint_type); FMT_TYPE_CONSTANT(long long, long_long_type); FMT_TYPE_CONSTANT(unsigned long long, ulong_long_type); FMT_TYPE_CONSTANT(int128_t, int128_type); FMT_TYPE_CONSTANT(uint128_t, uint128_type); FMT_TYPE_CONSTANT(bool, bool_type); FMT_TYPE_CONSTANT(Char, char_type); FMT_TYPE_CONSTANT(float, float_type); FMT_TYPE_CONSTANT(double, double_type); FMT_TYPE_CONSTANT(long double, long_double_type); FMT_TYPE_CONSTANT(const Char*, cstring_type); FMT_TYPE_CONSTANT(basic_string_view, string_type); FMT_TYPE_CONSTANT(const void*, pointer_type); constexpr bool is_integral_type(type t) { return t > type::none_type && t <= type::last_integer_type; } constexpr bool is_arithmetic_type(type t) { return t > type::none_type && t <= type::last_numeric_type; } template struct string_value { const Char* data; size_t size; }; template struct named_arg_value { const named_arg_info* data; size_t size; }; template struct custom_value { using parse_context = typename Context::parse_context_type; void* value; void (*format)(void* arg, parse_context& parse_ctx, Context& ctx); }; // A formatting argument value. template class value { public: using char_type = typename Context::char_type; union { monostate no_value; int int_value; unsigned uint_value; long long long_long_value; unsigned long long ulong_long_value; int128_t int128_value; uint128_t uint128_value; bool bool_value; char_type char_value; float float_value; double double_value; long double long_double_value; const void* pointer; string_value string; custom_value custom; named_arg_value named_args; }; constexpr FMT_INLINE value() : no_value() {} constexpr FMT_INLINE value(int val) : int_value(val) {} constexpr FMT_INLINE value(unsigned val) : uint_value(val) {} constexpr FMT_INLINE value(long long val) : long_long_value(val) {} constexpr FMT_INLINE value(unsigned long long val) : ulong_long_value(val) {} FMT_INLINE value(int128_t val) : int128_value(val) {} FMT_INLINE value(uint128_t val) : uint128_value(val) {} FMT_INLINE value(float val) : float_value(val) {} FMT_INLINE value(double val) : double_value(val) {} FMT_INLINE value(long double val) : long_double_value(val) {} constexpr FMT_INLINE value(bool val) : bool_value(val) {} constexpr FMT_INLINE value(char_type val) : char_value(val) {} FMT_CONSTEXPR FMT_INLINE value(const char_type* val) { string.data = val; if (is_constant_evaluated()) string.size = {}; } FMT_CONSTEXPR FMT_INLINE value(basic_string_view val) { string.data = val.data(); string.size = val.size(); } FMT_INLINE value(const void* val) : pointer(val) {} FMT_INLINE value(const named_arg_info* args, size_t size) : named_args{args, size} {} template FMT_CONSTEXPR FMT_INLINE value(T& val) { using value_type = remove_cvref_t; custom.value = const_cast(&val); // Get the formatter type through the context to allow different contexts // have different extension points, e.g. `formatter` for `format` and // `printf_formatter` for `printf`. custom.format = format_custom_arg< value_type, conditional_t::value, typename Context::template formatter_type, fallback_formatter>>; } private: // Formats an argument of a custom type, such as a user-defined class. template static void format_custom_arg(void* arg, typename Context::parse_context_type& parse_ctx, Context& ctx) { auto f = Formatter(); parse_ctx.advance_to(f.parse(parse_ctx)); using qualified_type = conditional_t(), const T, T>; ctx.advance_to(f.format(*static_cast(arg), ctx)); } }; template FMT_CONSTEXPR auto make_arg(const T& value) -> basic_format_arg; // To minimize the number of types we need to deal with, long is translated // either to int or to long long depending on its size. enum { long_short = sizeof(long) == sizeof(int) }; using long_type = conditional_t; using ulong_type = conditional_t; struct unformattable {}; // Maps formatting arguments to core types. template struct arg_mapper { using char_type = typename Context::char_type; FMT_CONSTEXPR FMT_INLINE auto map(signed char val) -> int { return val; } FMT_CONSTEXPR FMT_INLINE auto map(unsigned char val) -> unsigned { return val; } FMT_CONSTEXPR FMT_INLINE auto map(short val) -> int { return val; } FMT_CONSTEXPR FMT_INLINE auto map(unsigned short val) -> unsigned { return val; } FMT_CONSTEXPR FMT_INLINE auto map(int val) -> int { return val; } FMT_CONSTEXPR FMT_INLINE auto map(unsigned val) -> unsigned { return val; } FMT_CONSTEXPR FMT_INLINE auto map(long val) -> long_type { return val; } FMT_CONSTEXPR FMT_INLINE auto map(unsigned long val) -> ulong_type { return val; } FMT_CONSTEXPR FMT_INLINE auto map(long long val) -> long long { return val; } FMT_CONSTEXPR FMT_INLINE auto map(unsigned long long val) -> unsigned long long { return val; } FMT_CONSTEXPR FMT_INLINE auto map(int128_t val) -> int128_t { return val; } FMT_CONSTEXPR FMT_INLINE auto map(uint128_t val) -> uint128_t { return val; } FMT_CONSTEXPR FMT_INLINE auto map(bool val) -> bool { return val; } template ::value)> FMT_CONSTEXPR FMT_INLINE auto map(T val) -> char_type { static_assert( std::is_same::value || std::is_same::value, "mixing character types is disallowed"); return val; } FMT_CONSTEXPR FMT_INLINE auto map(float val) -> float { return val; } FMT_CONSTEXPR FMT_INLINE auto map(double val) -> double { return val; } FMT_CONSTEXPR FMT_INLINE auto map(long double val) -> long double { return val; } FMT_CONSTEXPR FMT_INLINE auto map(char_type* val) -> const char_type* { return val; } FMT_CONSTEXPR FMT_INLINE auto map(const char_type* val) -> const char_type* { return val; } template ::value)> FMT_CONSTEXPR FMT_INLINE auto map(const T& val) -> basic_string_view { static_assert(std::is_same>::value, "mixing character types is disallowed"); return to_string_view(val); } template , T>::value && !is_string::value && !has_formatter::value && !has_fallback_formatter::value)> FMT_CONSTEXPR FMT_INLINE auto map(const T& val) -> basic_string_view { return basic_string_view(val); } template < typename T, FMT_ENABLE_IF( std::is_constructible, T>::value && !std::is_constructible, T>::value && !is_string::value && !has_formatter::value && !has_fallback_formatter::value)> FMT_CONSTEXPR FMT_INLINE auto map(const T& val) -> basic_string_view { return std_string_view(val); } FMT_CONSTEXPR FMT_INLINE auto map(const signed char* val) -> const char* { static_assert(std::is_same::value, "invalid string type"); return reinterpret_cast(val); } FMT_CONSTEXPR FMT_INLINE auto map(const unsigned char* val) -> const char* { static_assert(std::is_same::value, "invalid string type"); return reinterpret_cast(val); } FMT_CONSTEXPR FMT_INLINE auto map(signed char* val) -> const char* { const auto* const_val = val; return map(const_val); } FMT_CONSTEXPR FMT_INLINE auto map(unsigned char* val) -> const char* { const auto* const_val = val; return map(const_val); } FMT_CONSTEXPR FMT_INLINE auto map(void* val) -> const void* { return val; } FMT_CONSTEXPR FMT_INLINE auto map(const void* val) -> const void* { return val; } FMT_CONSTEXPR FMT_INLINE auto map(std::nullptr_t val) -> const void* { return val; } // We use SFINAE instead of a const T* parameter to avoid conflicting with // the C array overload. template FMT_CONSTEXPR auto map(T) -> enable_if_t::value, int> { // Formatting of arbitrary pointers is disallowed. If you want to output // a pointer cast it to "void *" or "const void *". In particular, this // forbids formatting of "[const] volatile char *" which is printed as bool // by iostreams. static_assert(!sizeof(T), "formatting of non-void pointers is disallowed"); return 0; } template FMT_CONSTEXPR FMT_INLINE auto map(const T (&values)[N]) -> const T (&)[N] { return values; } template ::value && !has_formatter::value && !has_fallback_formatter::value)> FMT_CONSTEXPR FMT_INLINE auto map(const T& val) -> decltype(std::declval().map( static_cast::type>(val))) { return map(static_cast::type>(val)); } template , FMT_ENABLE_IF(!is_string::value && !is_char::value && !std::is_array::value && (has_formatter::value || has_fallback_formatter::value))> FMT_CONSTEXPR FMT_INLINE auto map(T&& val) -> T& { static_assert(is_const_formattable() || !std::is_const>() || has_fallback_formatter(), "cannot format a const argument"); return val; } template ::value)> FMT_CONSTEXPR FMT_INLINE auto map(const T& named_arg) -> decltype(std::declval().map(named_arg.value)) { return map(named_arg.value); } auto map(...) -> unformattable { return {}; } }; // A type constant after applying arg_mapper. template using mapped_type_constant = type_constant().map(std::declval())), typename Context::char_type>; enum { packed_arg_bits = 4 }; // Maximum number of arguments with packed types. enum { max_packed_args = 62 / packed_arg_bits }; enum : unsigned long long { is_unpacked_bit = 1ULL << 63 }; enum : unsigned long long { has_named_args_bit = 1ULL << 62 }; FMT_END_DETAIL_NAMESPACE // An output iterator that appends to a buffer. // It is used to reduce symbol sizes for the common case. class appender : public std::back_insert_iterator> { using base = std::back_insert_iterator>; template friend auto get_buffer(appender out) -> detail::buffer& { return detail::get_container(out); } public: using std::back_insert_iterator>::back_insert_iterator; appender(base it) : base(it) {} using _Unchecked_type = appender; // Mark iterator as checked. auto operator++() -> appender& { base::operator++(); return *this; } auto operator++(int) -> appender { auto tmp = *this; ++*this; return tmp; } }; // A formatting argument. It is a trivially copyable/constructible type to // allow storage in basic_memory_buffer. template class basic_format_arg { private: detail::value value_; detail::type type_; template friend FMT_CONSTEXPR auto detail::make_arg(const T& value) -> basic_format_arg; template friend FMT_CONSTEXPR auto visit_format_arg(Visitor&& vis, const basic_format_arg& arg) -> decltype(vis(0)); friend class basic_format_args; friend class dynamic_format_arg_store; using char_type = typename Context::char_type; template friend struct detail::arg_data; basic_format_arg(const detail::named_arg_info* args, size_t size) : value_(args, size) {} public: class handle { public: explicit handle(detail::custom_value custom) : custom_(custom) {} void format(typename Context::parse_context_type& parse_ctx, Context& ctx) const { custom_.format(custom_.value, parse_ctx, ctx); } private: detail::custom_value custom_; }; constexpr basic_format_arg() : type_(detail::type::none_type) {} constexpr explicit operator bool() const FMT_NOEXCEPT { return type_ != detail::type::none_type; } auto type() const -> detail::type { return type_; } auto is_integral() const -> bool { return detail::is_integral_type(type_); } auto is_arithmetic() const -> bool { return detail::is_arithmetic_type(type_); } }; /** \rst Visits an argument dispatching to the appropriate visit method based on the argument type. For example, if the argument type is ``double`` then ``vis(value)`` will be called with the value of type ``double``. \endrst */ template FMT_CONSTEXPR FMT_INLINE auto visit_format_arg( Visitor&& vis, const basic_format_arg& arg) -> decltype(vis(0)) { switch (arg.type_) { case detail::type::none_type: break; case detail::type::int_type: return vis(arg.value_.int_value); case detail::type::uint_type: return vis(arg.value_.uint_value); case detail::type::long_long_type: return vis(arg.value_.long_long_value); case detail::type::ulong_long_type: return vis(arg.value_.ulong_long_value); case detail::type::int128_type: return vis(detail::convert_for_visit(arg.value_.int128_value)); case detail::type::uint128_type: return vis(detail::convert_for_visit(arg.value_.uint128_value)); case detail::type::bool_type: return vis(arg.value_.bool_value); case detail::type::char_type: return vis(arg.value_.char_value); case detail::type::float_type: return vis(arg.value_.float_value); case detail::type::double_type: return vis(arg.value_.double_value); case detail::type::long_double_type: return vis(arg.value_.long_double_value); case detail::type::cstring_type: return vis(arg.value_.string.data); case detail::type::string_type: using sv = basic_string_view; return vis(sv(arg.value_.string.data, arg.value_.string.size)); case detail::type::pointer_type: return vis(arg.value_.pointer); case detail::type::custom_type: return vis(typename basic_format_arg::handle(arg.value_.custom)); } return vis(monostate()); } FMT_BEGIN_DETAIL_NAMESPACE template auto copy_str(InputIt begin, InputIt end, appender out) -> appender { get_container(out).append(begin, end); return out; } #if FMT_GCC_VERSION && FMT_GCC_VERSION < 500 // A workaround for gcc 4.8 to make void_t work in a SFINAE context. template struct void_t_impl { using type = void; }; template using void_t = typename detail::void_t_impl::type; #else template using void_t = void; #endif template struct is_output_iterator : std::false_type {}; template struct is_output_iterator< It, T, void_t::iterator_category, decltype(*std::declval() = std::declval())>> : std::true_type {}; template struct is_back_insert_iterator : std::false_type {}; template struct is_back_insert_iterator> : std::true_type {}; template struct is_contiguous_back_insert_iterator : std::false_type {}; template struct is_contiguous_back_insert_iterator> : is_contiguous {}; template <> struct is_contiguous_back_insert_iterator : std::true_type {}; // A type-erased reference to an std::locale to avoid heavy include. class locale_ref { private: const void* locale_; // A type-erased pointer to std::locale. public: constexpr locale_ref() : locale_(nullptr) {} template explicit locale_ref(const Locale& loc); explicit operator bool() const FMT_NOEXCEPT { return locale_ != nullptr; } template auto get() const -> Locale; }; template constexpr auto encode_types() -> unsigned long long { return 0; } template constexpr auto encode_types() -> unsigned long long { return static_cast(mapped_type_constant::value) | (encode_types() << packed_arg_bits); } template FMT_CONSTEXPR auto make_arg(const T& value) -> basic_format_arg { basic_format_arg arg; arg.type_ = mapped_type_constant::value; arg.value_ = arg_mapper().map(value); return arg; } // The type template parameter is there to avoid an ODR violation when using // a fallback formatter in one translation unit and an implicit conversion in // another (not recommended). template FMT_CONSTEXPR FMT_INLINE auto make_arg(T&& val) -> value { const auto& arg = arg_mapper().map(std::forward(val)); static_assert( !std::is_same::value, "Cannot format an argument. To make type T formattable provide a " "formatter specialization: https://fmt.dev/latest/api.html#udt"); return {arg}; } template inline auto make_arg(const T& value) -> basic_format_arg { return make_arg(value); } FMT_END_DETAIL_NAMESPACE // Formatting context. template class basic_format_context { public: /** The character type for the output. */ using char_type = Char; private: OutputIt out_; basic_format_args args_; detail::locale_ref loc_; public: using iterator = OutputIt; using format_arg = basic_format_arg; using parse_context_type = basic_format_parse_context; template using formatter_type = formatter; basic_format_context(basic_format_context&&) = default; basic_format_context(const basic_format_context&) = delete; void operator=(const basic_format_context&) = delete; /** Constructs a ``basic_format_context`` object. References to the arguments are stored in the object so make sure they have appropriate lifetimes. */ constexpr basic_format_context( OutputIt out, basic_format_args ctx_args, detail::locale_ref loc = detail::locale_ref()) : out_(out), args_(ctx_args), loc_(loc) {} constexpr auto arg(int id) const -> format_arg { return args_.get(id); } FMT_CONSTEXPR auto arg(basic_string_view name) -> format_arg { return args_.get(name); } FMT_CONSTEXPR auto arg_id(basic_string_view name) -> int { return args_.get_id(name); } auto args() const -> const basic_format_args& { return args_; } FMT_CONSTEXPR auto error_handler() -> detail::error_handler { return {}; } void on_error(const char* message) { error_handler().on_error(message); } // Returns an iterator to the beginning of the output range. FMT_CONSTEXPR auto out() -> iterator { return out_; } // Advances the begin iterator to ``it``. void advance_to(iterator it) { if (!detail::is_back_insert_iterator()) out_ = it; } FMT_CONSTEXPR auto locale() -> detail::locale_ref { return loc_; } }; template using buffer_context = basic_format_context, Char>; using format_context = buffer_context; // Workaround an alias issue: https://stackoverflow.com/q/62767544/471164. #define FMT_BUFFER_CONTEXT(Char) \ basic_format_context, Char> template using is_formattable = bool_constant< !std::is_same>().map( std::declval())), detail::unformattable>::value && !detail::has_fallback_formatter::value>; /** \rst An array of references to arguments. It can be implicitly converted into `~fmt::basic_format_args` for passing into type-erased formatting functions such as `~fmt::vformat`. \endrst */ template class format_arg_store #if FMT_GCC_VERSION && FMT_GCC_VERSION < 409 // Workaround a GCC template argument substitution bug. : public basic_format_args #endif { private: static const size_t num_args = sizeof...(Args); static const size_t num_named_args = detail::count_named_args(); static const bool is_packed = num_args <= detail::max_packed_args; using value_type = conditional_t, basic_format_arg>; detail::arg_data data_; friend class basic_format_args; static constexpr unsigned long long desc = (is_packed ? detail::encode_types() : detail::is_unpacked_bit | num_args) | (num_named_args != 0 ? static_cast(detail::has_named_args_bit) : 0); public: template FMT_CONSTEXPR FMT_INLINE format_arg_store(T&&... args) : #if FMT_GCC_VERSION && FMT_GCC_VERSION < 409 basic_format_args(*this), #endif data_{detail::make_arg< is_packed, Context, detail::mapped_type_constant, Context>::value>( std::forward(args))...} { detail::init_named_args(data_.named_args(), 0, 0, args...); } }; /** \rst Constructs a `~fmt::format_arg_store` object that contains references to arguments and can be implicitly converted to `~fmt::format_args`. `Context` can be omitted in which case it defaults to `~fmt::context`. See `~fmt::arg` for lifetime considerations. \endrst */ template constexpr auto make_format_args(Args&&... args) -> format_arg_store...> { return {std::forward(args)...}; } /** \rst Returns a named argument to be used in a formatting function. It should only be used in a call to a formatting function or `dynamic_format_arg_store::push_back`. **Example**:: fmt::print("Elapsed time: {s:.2f} seconds", fmt::arg("s", 1.23)); \endrst */ template inline auto arg(const Char* name, const T& arg) -> detail::named_arg { static_assert(!detail::is_named_arg(), "nested named arguments"); return {name, arg}; } /** \rst A view of a collection of formatting arguments. To avoid lifetime issues it should only be used as a parameter type in type-erased functions such as ``vformat``:: void vlog(string_view format_str, format_args args); // OK format_args args = make_format_args(42); // Error: dangling reference \endrst */ template class basic_format_args { public: using size_type = int; using format_arg = basic_format_arg; private: // A descriptor that contains information about formatting arguments. // If the number of arguments is less or equal to max_packed_args then // argument types are passed in the descriptor. This reduces binary code size // per formatting function call. unsigned long long desc_; union { // If is_packed() returns true then argument values are stored in values_; // otherwise they are stored in args_. This is done to improve cache // locality and reduce compiled code size since storing larger objects // may require more code (at least on x86-64) even if the same amount of // data is actually copied to stack. It saves ~10% on the bloat test. const detail::value* values_; const format_arg* args_; }; constexpr auto is_packed() const -> bool { return (desc_ & detail::is_unpacked_bit) == 0; } auto has_named_args() const -> bool { return (desc_ & detail::has_named_args_bit) != 0; } FMT_CONSTEXPR auto type(int index) const -> detail::type { int shift = index * detail::packed_arg_bits; unsigned int mask = (1 << detail::packed_arg_bits) - 1; return static_cast((desc_ >> shift) & mask); } constexpr FMT_INLINE basic_format_args(unsigned long long desc, const detail::value* values) : desc_(desc), values_(values) {} constexpr basic_format_args(unsigned long long desc, const format_arg* args) : desc_(desc), args_(args) {} public: constexpr basic_format_args() : desc_(0), args_(nullptr) {} /** \rst Constructs a `basic_format_args` object from `~fmt::format_arg_store`. \endrst */ template constexpr FMT_INLINE basic_format_args( const format_arg_store& store) : basic_format_args(format_arg_store::desc, store.data_.args()) {} /** \rst Constructs a `basic_format_args` object from `~fmt::dynamic_format_arg_store`. \endrst */ constexpr FMT_INLINE basic_format_args( const dynamic_format_arg_store& store) : basic_format_args(store.get_types(), store.data()) {} /** \rst Constructs a `basic_format_args` object from a dynamic set of arguments. \endrst */ constexpr basic_format_args(const format_arg* args, int count) : basic_format_args(detail::is_unpacked_bit | detail::to_unsigned(count), args) {} /** Returns the argument with the specified id. */ FMT_CONSTEXPR auto get(int id) const -> format_arg { format_arg arg; if (!is_packed()) { if (id < max_size()) arg = args_[id]; return arg; } if (id >= detail::max_packed_args) return arg; arg.type_ = type(id); if (arg.type_ == detail::type::none_type) return arg; arg.value_ = values_[id]; return arg; } template auto get(basic_string_view name) const -> format_arg { int id = get_id(name); return id >= 0 ? get(id) : format_arg(); } template auto get_id(basic_string_view name) const -> int { if (!has_named_args()) return -1; const auto& named_args = (is_packed() ? values_[-1] : args_[-1].value_).named_args; for (size_t i = 0; i < named_args.size; ++i) { if (named_args.data[i].name == name) return named_args.data[i].id; } return -1; } auto max_size() const -> int { unsigned long long max_packed = detail::max_packed_args; return static_cast(is_packed() ? max_packed : desc_ & ~detail::is_unpacked_bit); } }; /** An alias to ``basic_format_args``. */ // A separate type would result in shorter symbols but break ABI compatibility // between clang and gcc on ARM (#1919). using format_args = basic_format_args; // We cannot use enum classes as bit fields because of a gcc bug // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61414. namespace align { enum type { none, left, right, center, numeric }; } using align_t = align::type; namespace sign { enum type { none, minus, plus, space }; } using sign_t = sign::type; FMT_BEGIN_DETAIL_NAMESPACE void throw_format_error(const char* message); // Workaround an array initialization issue in gcc 4.8. template struct fill_t { private: enum { max_size = 4 }; Char data_[max_size] = {Char(' '), Char(0), Char(0), Char(0)}; unsigned char size_ = 1; public: FMT_CONSTEXPR void operator=(basic_string_view s) { auto size = s.size(); if (size > max_size) return throw_format_error("invalid fill"); for (size_t i = 0; i < size; ++i) data_[i] = s[i]; size_ = static_cast(size); } constexpr auto size() const -> size_t { return size_; } constexpr auto data() const -> const Char* { return data_; } FMT_CONSTEXPR auto operator[](size_t index) -> Char& { return data_[index]; } FMT_CONSTEXPR auto operator[](size_t index) const -> const Char& { return data_[index]; } }; FMT_END_DETAIL_NAMESPACE // Format specifiers for built-in and string types. template struct basic_format_specs { int width; int precision; char type; align_t align : 4; sign_t sign : 3; bool alt : 1; // Alternate form ('#'). bool localized : 1; detail::fill_t fill; constexpr basic_format_specs() : width(0), precision(-1), type(0), align(align::none), sign(sign::none), alt(false), localized(false) {} }; using format_specs = basic_format_specs; FMT_BEGIN_DETAIL_NAMESPACE enum class arg_id_kind { none, index, name }; // An argument reference. template struct arg_ref { FMT_CONSTEXPR arg_ref() : kind(arg_id_kind::none), val() {} FMT_CONSTEXPR explicit arg_ref(int index) : kind(arg_id_kind::index), val(index) {} FMT_CONSTEXPR explicit arg_ref(basic_string_view name) : kind(arg_id_kind::name), val(name) {} FMT_CONSTEXPR auto operator=(int idx) -> arg_ref& { kind = arg_id_kind::index; val.index = idx; return *this; } arg_id_kind kind; union value { FMT_CONSTEXPR value(int id = 0) : index{id} {} FMT_CONSTEXPR value(basic_string_view n) : name(n) {} int index; basic_string_view name; } val; }; // Format specifiers with width and precision resolved at formatting rather // than parsing time to allow re-using the same parsed specifiers with // different sets of arguments (precompilation of format strings). template struct dynamic_format_specs : basic_format_specs { arg_ref width_ref; arg_ref precision_ref; }; struct auto_id {}; // A format specifier handler that sets fields in basic_format_specs. template class specs_setter { protected: basic_format_specs& specs_; public: explicit FMT_CONSTEXPR specs_setter(basic_format_specs& specs) : specs_(specs) {} FMT_CONSTEXPR specs_setter(const specs_setter& other) : specs_(other.specs_) {} FMT_CONSTEXPR void on_align(align_t align) { specs_.align = align; } FMT_CONSTEXPR void on_fill(basic_string_view fill) { specs_.fill = fill; } FMT_CONSTEXPR void on_sign(sign_t s) { specs_.sign = s; } FMT_CONSTEXPR void on_hash() { specs_.alt = true; } FMT_CONSTEXPR void on_localized() { specs_.localized = true; } FMT_CONSTEXPR void on_zero() { if (specs_.align == align::none) specs_.align = align::numeric; specs_.fill[0] = Char('0'); } FMT_CONSTEXPR void on_width(int width) { specs_.width = width; } FMT_CONSTEXPR void on_precision(int precision) { specs_.precision = precision; } FMT_CONSTEXPR void end_precision() {} FMT_CONSTEXPR void on_type(Char type) { specs_.type = static_cast(type); } }; // Format spec handler that saves references to arguments representing dynamic // width and precision to be resolved at formatting time. template class dynamic_specs_handler : public specs_setter { public: using char_type = typename ParseContext::char_type; FMT_CONSTEXPR dynamic_specs_handler(dynamic_format_specs& specs, ParseContext& ctx) : specs_setter(specs), specs_(specs), context_(ctx) {} FMT_CONSTEXPR dynamic_specs_handler(const dynamic_specs_handler& other) : specs_setter(other), specs_(other.specs_), context_(other.context_) {} template FMT_CONSTEXPR void on_dynamic_width(Id arg_id) { specs_.width_ref = make_arg_ref(arg_id); } template FMT_CONSTEXPR void on_dynamic_precision(Id arg_id) { specs_.precision_ref = make_arg_ref(arg_id); } FMT_CONSTEXPR void on_error(const char* message) { context_.on_error(message); } private: dynamic_format_specs& specs_; ParseContext& context_; using arg_ref_type = arg_ref; FMT_CONSTEXPR auto make_arg_ref(int arg_id) -> arg_ref_type { context_.check_arg_id(arg_id); return arg_ref_type(arg_id); } FMT_CONSTEXPR auto make_arg_ref(auto_id) -> arg_ref_type { return arg_ref_type(context_.next_arg_id()); } FMT_CONSTEXPR auto make_arg_ref(basic_string_view arg_id) -> arg_ref_type { context_.check_arg_id(arg_id); basic_string_view format_str( context_.begin(), to_unsigned(context_.end() - context_.begin())); return arg_ref_type(arg_id); } }; template constexpr bool is_ascii_letter(Char c) { return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'); } // Converts a character to ASCII. Returns a number > 127 on conversion failure. template ::value)> constexpr auto to_ascii(Char value) -> Char { return value; } template ::value)> constexpr auto to_ascii(Char value) -> typename std::underlying_type::type { return value; } template FMT_CONSTEXPR auto code_point_length(const Char* begin) -> int { if (const_check(sizeof(Char) != 1)) return 1; constexpr char lengths[] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 3, 3, 4, 0}; int len = lengths[static_cast(*begin) >> 3]; // Compute the pointer to the next character early so that the next // iteration can start working on the next character. Neither Clang // nor GCC figure out this reordering on their own. return len + !len; } // Return the result via the out param to workaround gcc bug 77539. template FMT_CONSTEXPR auto find(Ptr first, Ptr last, T value, Ptr& out) -> bool { for (out = first; out != last; ++out) { if (*out == value) return true; } return false; } template <> inline auto find(const char* first, const char* last, char value, const char*& out) -> bool { out = static_cast( std::memchr(first, value, to_unsigned(last - first))); return out != nullptr; } // Parses the range [begin, end) as an unsigned integer. This function assumes // that the range is non-empty and the first character is a digit. template FMT_CONSTEXPR auto parse_nonnegative_int(const Char*& begin, const Char* end, int error_value) noexcept -> int { FMT_ASSERT(begin != end && '0' <= *begin && *begin <= '9', ""); unsigned value = 0, prev = 0; auto p = begin; do { prev = value; value = value * 10 + unsigned(*p - '0'); ++p; } while (p != end && '0' <= *p && *p <= '9'); auto num_digits = p - begin; begin = p; if (num_digits <= std::numeric_limits::digits10) return static_cast(value); // Check for overflow. const unsigned max = to_unsigned((std::numeric_limits::max)()); return num_digits == std::numeric_limits::digits10 + 1 && prev * 10ull + unsigned(p[-1] - '0') <= max ? static_cast(value) : error_value; } // Parses fill and alignment. template FMT_CONSTEXPR auto parse_align(const Char* begin, const Char* end, Handler&& handler) -> const Char* { FMT_ASSERT(begin != end, ""); auto align = align::none; auto p = begin + code_point_length(begin); if (p >= end) p = begin; for (;;) { switch (to_ascii(*p)) { case '<': align = align::left; break; case '>': align = align::right; break; case '^': align = align::center; break; default: break; } if (align != align::none) { if (p != begin) { auto c = *begin; if (c == '{') return handler.on_error("invalid fill character '{'"), begin; handler.on_fill(basic_string_view(begin, to_unsigned(p - begin))); begin = p + 1; } else ++begin; handler.on_align(align); break; } else if (p == begin) { break; } p = begin; } return begin; } template FMT_CONSTEXPR bool is_name_start(Char c) { return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || '_' == c; } template FMT_CONSTEXPR auto do_parse_arg_id(const Char* begin, const Char* end, IDHandler&& handler) -> const Char* { FMT_ASSERT(begin != end, ""); Char c = *begin; if (c >= '0' && c <= '9') { int index = 0; if (c != '0') index = parse_nonnegative_int(begin, end, (std::numeric_limits::max)()); else ++begin; if (begin == end || (*begin != '}' && *begin != ':')) handler.on_error("invalid format string"); else handler(index); return begin; } if (!is_name_start(c)) { handler.on_error("invalid format string"); return begin; } auto it = begin; do { ++it; } while (it != end && (is_name_start(c = *it) || ('0' <= c && c <= '9'))); handler(basic_string_view(begin, to_unsigned(it - begin))); return it; } template FMT_CONSTEXPR FMT_INLINE auto parse_arg_id(const Char* begin, const Char* end, IDHandler&& handler) -> const Char* { Char c = *begin; if (c != '}' && c != ':') return do_parse_arg_id(begin, end, handler); handler(); return begin; } template FMT_CONSTEXPR auto parse_width(const Char* begin, const Char* end, Handler&& handler) -> const Char* { using detail::auto_id; struct width_adapter { Handler& handler; FMT_CONSTEXPR void operator()() { handler.on_dynamic_width(auto_id()); } FMT_CONSTEXPR void operator()(int id) { handler.on_dynamic_width(id); } FMT_CONSTEXPR void operator()(basic_string_view id) { handler.on_dynamic_width(id); } FMT_CONSTEXPR void on_error(const char* message) { if (message) handler.on_error(message); } }; FMT_ASSERT(begin != end, ""); if ('0' <= *begin && *begin <= '9') { int width = parse_nonnegative_int(begin, end, -1); if (width != -1) handler.on_width(width); else handler.on_error("number is too big"); } else if (*begin == '{') { ++begin; if (begin != end) begin = parse_arg_id(begin, end, width_adapter{handler}); if (begin == end || *begin != '}') return handler.on_error("invalid format string"), begin; ++begin; } return begin; } template FMT_CONSTEXPR auto parse_precision(const Char* begin, const Char* end, Handler&& handler) -> const Char* { using detail::auto_id; struct precision_adapter { Handler& handler; FMT_CONSTEXPR void operator()() { handler.on_dynamic_precision(auto_id()); } FMT_CONSTEXPR void operator()(int id) { handler.on_dynamic_precision(id); } FMT_CONSTEXPR void operator()(basic_string_view id) { handler.on_dynamic_precision(id); } FMT_CONSTEXPR void on_error(const char* message) { if (message) handler.on_error(message); } }; ++begin; auto c = begin != end ? *begin : Char(); if ('0' <= c && c <= '9') { auto precision = parse_nonnegative_int(begin, end, -1); if (precision != -1) handler.on_precision(precision); else handler.on_error("number is too big"); } else if (c == '{') { ++begin; if (begin != end) begin = parse_arg_id(begin, end, precision_adapter{handler}); if (begin == end || *begin++ != '}') return handler.on_error("invalid format string"), begin; } else { return handler.on_error("missing precision specifier"), begin; } handler.end_precision(); return begin; } // Parses standard format specifiers and sends notifications about parsed // components to handler. template FMT_CONSTEXPR FMT_INLINE auto parse_format_specs(const Char* begin, const Char* end, SpecHandler&& handler) -> const Char* { if (begin + 1 < end && begin[1] == '}' && is_ascii_letter(*begin) && *begin != 'L') { handler.on_type(*begin++); return begin; } if (begin == end) return begin; begin = parse_align(begin, end, handler); if (begin == end) return begin; // Parse sign. switch (to_ascii(*begin)) { case '+': handler.on_sign(sign::plus); ++begin; break; case '-': handler.on_sign(sign::minus); ++begin; break; case ' ': handler.on_sign(sign::space); ++begin; break; default: break; } if (begin == end) return begin; if (*begin == '#') { handler.on_hash(); if (++begin == end) return begin; } // Parse zero flag. if (*begin == '0') { handler.on_zero(); if (++begin == end) return begin; } begin = parse_width(begin, end, handler); if (begin == end) return begin; // Parse precision. if (*begin == '.') { begin = parse_precision(begin, end, handler); if (begin == end) return begin; } if (*begin == 'L') { handler.on_localized(); ++begin; } // Parse type. if (begin != end && *begin != '}') handler.on_type(*begin++); return begin; } template FMT_CONSTEXPR auto parse_replacement_field(const Char* begin, const Char* end, Handler&& handler) -> const Char* { struct id_adapter { Handler& handler; int arg_id; FMT_CONSTEXPR void operator()() { arg_id = handler.on_arg_id(); } FMT_CONSTEXPR void operator()(int id) { arg_id = handler.on_arg_id(id); } FMT_CONSTEXPR void operator()(basic_string_view id) { arg_id = handler.on_arg_id(id); } FMT_CONSTEXPR void on_error(const char* message) { if (message) handler.on_error(message); } }; ++begin; if (begin == end) return handler.on_error("invalid format string"), end; if (*begin == '}') { handler.on_replacement_field(handler.on_arg_id(), begin); } else if (*begin == '{') { handler.on_text(begin, begin + 1); } else { auto adapter = id_adapter{handler, 0}; begin = parse_arg_id(begin, end, adapter); Char c = begin != end ? *begin : Char(); if (c == '}') { handler.on_replacement_field(adapter.arg_id, begin); } else if (c == ':') { begin = handler.on_format_specs(adapter.arg_id, begin + 1, end); if (begin == end || *begin != '}') return handler.on_error("unknown format specifier"), end; } else { return handler.on_error("missing '}' in format string"), end; } } return begin + 1; } template FMT_CONSTEXPR FMT_INLINE void parse_format_string( basic_string_view format_str, Handler&& handler) { // this is most likely a name-lookup defect in msvc's modules implementation using detail::find; auto begin = format_str.data(); auto end = begin + format_str.size(); if (end - begin < 32) { // Use a simple loop instead of memchr for small strings. const Char* p = begin; while (p != end) { auto c = *p++; if (c == '{') { handler.on_text(begin, p - 1); begin = p = parse_replacement_field(p - 1, end, handler); } else if (c == '}') { if (p == end || *p != '}') return handler.on_error("unmatched '}' in format string"); handler.on_text(begin, p); begin = ++p; } } handler.on_text(begin, end); return; } struct writer { FMT_CONSTEXPR void operator()(const Char* pbegin, const Char* pend) { if (pbegin == pend) return; for (;;) { const Char* p = nullptr; if (!find(pbegin, pend, Char('}'), p)) return handler_.on_text(pbegin, pend); ++p; if (p == pend || *p != '}') return handler_.on_error("unmatched '}' in format string"); handler_.on_text(pbegin, p); pbegin = p + 1; } } Handler& handler_; } write{handler}; while (begin != end) { // Doing two passes with memchr (one for '{' and another for '}') is up to // 2.5x faster than the naive one-pass implementation on big format strings. const Char* p = begin; if (*begin != '{' && !find(begin + 1, end, Char('{'), p)) return write(begin, end); write(begin, p); begin = parse_replacement_field(p, end, handler); } } template FMT_CONSTEXPR auto parse_format_specs(ParseContext& ctx) -> decltype(ctx.begin()) { using char_type = typename ParseContext::char_type; using context = buffer_context; using mapped_type = conditional_t< mapped_type_constant::value != type::custom_type, decltype(arg_mapper().map(std::declval())), T>; auto f = conditional_t::value, formatter, fallback_formatter>(); return f.parse(ctx); } // A parse context with extra argument id checks. It is only used at compile // time because adding checks at runtime would introduce substantial overhead // and would be redundant since argument ids are checked when arguments are // retrieved anyway. template class compile_parse_context : public basic_format_parse_context { private: int num_args_; using base = basic_format_parse_context; public: explicit FMT_CONSTEXPR compile_parse_context( basic_string_view format_str, int num_args = (std::numeric_limits::max)(), ErrorHandler eh = {}) : base(format_str, eh), num_args_(num_args) {} FMT_CONSTEXPR auto next_arg_id() -> int { int id = base::next_arg_id(); if (id >= num_args_) this->on_error("argument not found"); return id; } FMT_CONSTEXPR void check_arg_id(int id) { base::check_arg_id(id); if (id >= num_args_) this->on_error("argument not found"); } using base::check_arg_id; }; template FMT_CONSTEXPR void check_int_type_spec(char spec, ErrorHandler&& eh) { switch (spec) { case 0: case 'd': case 'x': case 'X': case 'b': case 'B': case 'o': case 'c': break; default: eh.on_error("invalid type specifier"); break; } } // Checks char specs and returns true if the type spec is char (and not int). template FMT_CONSTEXPR auto check_char_specs(const basic_format_specs& specs, ErrorHandler&& eh = {}) -> bool { if (specs.type && specs.type != 'c') { check_int_type_spec(specs.type, eh); return false; } if (specs.align == align::numeric || specs.sign != sign::none || specs.alt) eh.on_error("invalid format specifier for char"); return true; } // A floating-point presentation format. enum class float_format : unsigned char { general, // General: exponent notation or fixed point based on magnitude. exp, // Exponent notation with the default precision of 6, e.g. 1.2e-3. fixed, // Fixed point with the default precision of 6, e.g. 0.0012. hex }; struct float_specs { int precision; float_format format : 8; sign_t sign : 8; bool upper : 1; bool locale : 1; bool binary32 : 1; bool use_grisu : 1; bool showpoint : 1; }; template FMT_CONSTEXPR auto parse_float_type_spec(const basic_format_specs& specs, ErrorHandler&& eh = {}) -> float_specs { auto result = float_specs(); result.showpoint = specs.alt; result.locale = specs.localized; switch (specs.type) { case 0: result.format = float_format::general; break; case 'G': result.upper = true; FMT_FALLTHROUGH; case 'g': result.format = float_format::general; break; case 'E': result.upper = true; FMT_FALLTHROUGH; case 'e': result.format = float_format::exp; result.showpoint |= specs.precision != 0; break; case 'F': result.upper = true; FMT_FALLTHROUGH; case 'f': result.format = float_format::fixed; result.showpoint |= specs.precision != 0; break; case 'A': result.upper = true; FMT_FALLTHROUGH; case 'a': result.format = float_format::hex; break; default: eh.on_error("invalid type specifier"); break; } return result; } template FMT_CONSTEXPR auto check_cstring_type_spec(Char spec, ErrorHandler&& eh = {}) -> bool { if (spec == 0 || spec == 's') return true; if (spec != 'p') eh.on_error("invalid type specifier"); return false; } template FMT_CONSTEXPR void check_string_type_spec(Char spec, ErrorHandler&& eh = {}) { if (spec != 0 && spec != 's') eh.on_error("invalid type specifier"); } template FMT_CONSTEXPR void check_pointer_type_spec(Char spec, ErrorHandler&& eh) { if (spec != 0 && spec != 'p') eh.on_error("invalid type specifier"); } // A parse_format_specs handler that checks if specifiers are consistent with // the argument type. template class specs_checker : public Handler { private: detail::type arg_type_; FMT_CONSTEXPR void require_numeric_argument() { if (!is_arithmetic_type(arg_type_)) this->on_error("format specifier requires numeric argument"); } public: FMT_CONSTEXPR specs_checker(const Handler& handler, detail::type arg_type) : Handler(handler), arg_type_(arg_type) {} FMT_CONSTEXPR void on_align(align_t align) { if (align == align::numeric) require_numeric_argument(); Handler::on_align(align); } FMT_CONSTEXPR void on_sign(sign_t s) { require_numeric_argument(); if (is_integral_type(arg_type_) && arg_type_ != type::int_type && arg_type_ != type::long_long_type && arg_type_ != type::char_type) { this->on_error("format specifier requires signed argument"); } Handler::on_sign(s); } FMT_CONSTEXPR void on_hash() { require_numeric_argument(); Handler::on_hash(); } FMT_CONSTEXPR void on_localized() { require_numeric_argument(); Handler::on_localized(); } FMT_CONSTEXPR void on_zero() { require_numeric_argument(); Handler::on_zero(); } FMT_CONSTEXPR void end_precision() { if (is_integral_type(arg_type_) || arg_type_ == type::pointer_type) this->on_error("precision not allowed for this argument type"); } }; constexpr int invalid_arg_index = -1; #if FMT_USE_NONTYPE_TEMPLATE_PARAMETERS template constexpr auto get_arg_index_by_name(basic_string_view name) -> int { if constexpr (detail::is_statically_named_arg()) { if (name == T::name) return N; } if constexpr (sizeof...(Args) > 0) { return get_arg_index_by_name(name); } else { (void)name; // Workaround an MSVC bug about "unused" parameter. return invalid_arg_index; } } #endif template FMT_CONSTEXPR auto get_arg_index_by_name(basic_string_view name) -> int { #if FMT_USE_NONTYPE_TEMPLATE_PARAMETERS if constexpr (sizeof...(Args) > 0) { return get_arg_index_by_name<0, Args...>(name); } else { (void)name; return invalid_arg_index; } #else (void)name; return invalid_arg_index; #endif } template class format_string_checker { private: using parse_context_type = compile_parse_context; enum { num_args = sizeof...(Args) }; // Format specifier parsing function. using parse_func = const Char* (*)(parse_context_type&); parse_context_type context_; parse_func parse_funcs_[num_args > 0 ? num_args : 1]; public: explicit FMT_CONSTEXPR format_string_checker( basic_string_view format_str, ErrorHandler eh) : context_(format_str, num_args, eh), parse_funcs_{&parse_format_specs...} {} FMT_CONSTEXPR void on_text(const Char*, const Char*) {} FMT_CONSTEXPR auto on_arg_id() -> int { return context_.next_arg_id(); } FMT_CONSTEXPR auto on_arg_id(int id) -> int { return context_.check_arg_id(id), id; } FMT_CONSTEXPR auto on_arg_id(basic_string_view id) -> int { #if FMT_USE_NONTYPE_TEMPLATE_PARAMETERS auto index = get_arg_index_by_name(id); if (index == invalid_arg_index) on_error("named argument is not found"); return context_.check_arg_id(index), index; #else (void)id; on_error("compile-time checks for named arguments require C++20 support"); return 0; #endif } FMT_CONSTEXPR void on_replacement_field(int, const Char*) {} FMT_CONSTEXPR auto on_format_specs(int id, const Char* begin, const Char*) -> const Char* { context_.advance_to(context_.begin() + (begin - &*context_.begin())); // id >= 0 check is a workaround for gcc 10 bug (#2065). return id >= 0 && id < num_args ? parse_funcs_[id](context_) : begin; } FMT_CONSTEXPR void on_error(const char* message) { context_.on_error(message); } }; template ::value), int>> void check_format_string(S format_str) { FMT_CONSTEXPR auto s = to_string_view(format_str); using checker = format_string_checker...>; FMT_CONSTEXPR bool invalid_format = (parse_format_string(s, checker(s, {})), true); ignore_unused(invalid_format); } template void vformat_to( buffer& buf, basic_string_view fmt, basic_format_args)> args, locale_ref loc = {}); FMT_API void vprint_mojibake(std::FILE*, string_view, format_args); #ifndef _WIN32 inline void vprint_mojibake(std::FILE*, string_view, format_args) {} #endif FMT_END_DETAIL_NAMESPACE // A formatter specialization for the core types corresponding to detail::type // constants. template struct formatter::value != detail::type::custom_type>> { private: detail::dynamic_format_specs specs_; public: // Parses format specifiers stopping either at the end of the range or at the // terminating '}'. template FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) { auto begin = ctx.begin(), end = ctx.end(); if (begin == end) return begin; using handler_type = detail::dynamic_specs_handler; auto type = detail::type_constant::value; auto checker = detail::specs_checker(handler_type(specs_, ctx), type); auto it = detail::parse_format_specs(begin, end, checker); auto eh = ctx.error_handler(); switch (type) { case detail::type::none_type: FMT_ASSERT(false, "invalid argument type"); break; case detail::type::bool_type: if (!specs_.type || specs_.type == 's') break; FMT_FALLTHROUGH; case detail::type::int_type: case detail::type::uint_type: case detail::type::long_long_type: case detail::type::ulong_long_type: case detail::type::int128_type: case detail::type::uint128_type: detail::check_int_type_spec(specs_.type, eh); break; case detail::type::char_type: detail::check_char_specs(specs_, eh); break; case detail::type::float_type: if (detail::const_check(FMT_USE_FLOAT)) detail::parse_float_type_spec(specs_, eh); else FMT_ASSERT(false, "float support disabled"); break; case detail::type::double_type: if (detail::const_check(FMT_USE_DOUBLE)) detail::parse_float_type_spec(specs_, eh); else FMT_ASSERT(false, "double support disabled"); break; case detail::type::long_double_type: if (detail::const_check(FMT_USE_LONG_DOUBLE)) detail::parse_float_type_spec(specs_, eh); else FMT_ASSERT(false, "long double support disabled"); break; case detail::type::cstring_type: detail::check_cstring_type_spec(specs_.type, eh); break; case detail::type::string_type: detail::check_string_type_spec(specs_.type, eh); break; case detail::type::pointer_type: detail::check_pointer_type_spec(specs_.type, eh); break; case detail::type::custom_type: // Custom format specifiers are checked in parse functions of // formatter specializations. break; } return it; } template FMT_CONSTEXPR auto format(const T& val, FormatContext& ctx) const -> decltype(ctx.out()); }; template struct basic_runtime { basic_string_view str; }; template class basic_format_string { private: basic_string_view str_; public: template >::value)> FMT_CONSTEVAL basic_format_string(const S& s) : str_(s) { static_assert( detail::count< (std::is_base_of>::value && std::is_reference::value)...>() == 0, "passing views as lvalues is disallowed"); #ifdef FMT_HAS_CONSTEVAL if constexpr (detail::count_named_args() == 0) { using checker = detail::format_string_checker...>; detail::parse_format_string(str_, checker(s, {})); } #else detail::check_format_string(s); #endif } basic_format_string(basic_runtime r) : str_(r.str) {} FMT_INLINE operator basic_string_view() const { return str_; } }; #if FMT_GCC_VERSION && FMT_GCC_VERSION < 409 // Workaround broken conversion on older gcc. template using format_string = string_view; template auto runtime(const S& s) -> basic_string_view> { return s; } #else template using format_string = basic_format_string...>; // Creates a runtime format string. template auto runtime(const S& s) -> basic_runtime> { return {{s}}; } #endif FMT_API auto vformat(string_view fmt, format_args args) -> std::string; /** \rst Formats ``args`` according to specifications in ``fmt`` and returns the result as a string. **Example**:: #include std::string message = fmt::format("The answer is {}", 42); \endrst */ template FMT_INLINE auto format(format_string fmt, T&&... args) -> std::string { return vformat(fmt, fmt::make_format_args(args...)); } /** Formats a string and writes the output to ``out``. */ template ::value)> auto vformat_to(OutputIt out, string_view fmt, format_args args) -> OutputIt { using detail::get_buffer; auto&& buf = get_buffer(out); detail::vformat_to(buf, string_view(fmt), args, {}); return detail::get_iterator(buf); } /** \rst Formats ``args`` according to specifications in ``fmt``, writes the result to the output iterator ``out`` and returns the iterator past the end of the output range. **Example**:: auto out = std::vector(); fmt::format_to(std::back_inserter(out), "{}", 42); \endrst */ template ::value)> FMT_INLINE auto format_to(OutputIt out, format_string fmt, T&&... args) -> OutputIt { return vformat_to(out, fmt, fmt::make_format_args(args...)); } template struct format_to_n_result { /** Iterator past the end of the output range. */ OutputIt out; /** Total (not truncated) output size. */ size_t size; }; template ::value)> auto vformat_to_n(OutputIt out, size_t n, string_view fmt, format_args args) -> format_to_n_result { using buffer = detail::iterator_buffer; auto buf = buffer(out, n); detail::vformat_to(buf, fmt, args, {}); return {buf.out(), buf.count()}; } /** \rst Formats ``args`` according to specifications in ``fmt``, writes up to ``n`` characters of the result to the output iterator ``out`` and returns the total (not truncated) output size and the iterator past the end of the output range. \endrst */ template ::value)> FMT_INLINE auto format_to_n(OutputIt out, size_t n, format_string fmt, T&&... args) -> format_to_n_result { return vformat_to_n(out, n, fmt, fmt::make_format_args(args...)); } /** Returns the number of chars in the output of ``format(fmt, args...)``. */ template FMT_INLINE auto formatted_size(format_string fmt, T&&... args) -> size_t { auto buf = detail::counting_buffer<>(); detail::vformat_to(buf, string_view(fmt), fmt::make_format_args(args...), {}); return buf.count(); } FMT_API void vprint(string_view fmt, format_args args); FMT_API void vprint(std::FILE* f, string_view fmt, format_args args); /** \rst Formats ``args`` according to specifications in ``fmt`` and writes the output to ``stdout``. **Example**:: fmt::print("Elapsed time: {0:.2f} seconds", 1.23); \endrst */ template FMT_INLINE void print(format_string fmt, T&&... args) { const auto& vargs = fmt::make_format_args(args...); return detail::is_utf8() ? vprint(fmt, vargs) : detail::vprint_mojibake(stdout, fmt, vargs); } /** \rst Formats ``args`` according to specifications in ``fmt`` and writes the output to the file ``f``. **Example**:: fmt::print(stderr, "Don't {}!", "panic"); \endrst */ template FMT_INLINE void print(std::FILE* f, format_string fmt, T&&... args) { const auto& vargs = fmt::make_format_args(args...); return detail::is_utf8() ? vprint(f, fmt, vargs) : detail::vprint_mojibake(f, fmt, vargs); } FMT_MODULE_EXPORT_END FMT_GCC_PRAGMA("GCC pop_options") FMT_END_NAMESPACE #ifdef FMT_HEADER_ONLY # include "format.h" #endif #endif // FMT_CORE_H_