/* cdf/betainv.c * * Copyright (C) 2004 Free Software Foundation, Inc. * Copyright (C) 2006, 2007 Brian Gough * Written by Jason H. Stover. * Modified for GSL by Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* * Invert the Beta distribution. * * References: * * Roger W. Abernathy and Robert P. Smith. "Applying Series Expansion * to the Inverse Beta Distribution to Find Percentiles of the * F-Distribution," ACM Transactions on Mathematical Software, volume * 19, number 4, December 1993, pages 474-480. * * G.W. Hill and A.W. Davis. "Generalized asymptotic expansions of a * Cornish-Fisher type," Annals of Mathematical Statistics, volume 39, * number 8, August 1968, pages 1264-1273. */ #include #include #include #include #include #include #include #include "error.h" static double bisect (double x, double P, double a, double b, double xtol, double Ptol) { double x0 = 0, x1 = 1, Px; while (fabs(x1 - x0) > xtol) { Px = gsl_cdf_beta_P (x, a, b); if (fabs(Px - P) < Ptol) { /* return as soon as approximation is good enough, including on the first iteration */ return x; } else if (Px < P) { x0 = x; } else if (Px > P) { x1 = x; } x = 0.5 * (x0 + x1); } return x; } double gsl_cdf_beta_Pinv (const double P, const double a, const double b) { double x, mean; if (P < 0.0 || P > 1.0) { CDF_ERROR ("P must be in range 0 < P < 1", GSL_EDOM); } if (a < 0.0) { CDF_ERROR ("a < 0", GSL_EDOM); } if (b < 0.0) { CDF_ERROR ("b < 0", GSL_EDOM); } if (P == 0.0) { return 0.0; } if (P == 1.0) { return 1.0; } if (P > 0.5) { return gsl_cdf_beta_Qinv (1 - P, a, b); } mean = a / (a + b); if (P < 0.1) { /* small x */ double lg_ab = gsl_sf_lngamma (a + b); double lg_a = gsl_sf_lngamma (a); double lg_b = gsl_sf_lngamma (b); double lx = (log (a) + lg_a + lg_b - lg_ab + log (P)) / a; if (lx <= 0) { x = exp (lx); /* first approximation */ x *= pow (1 - x, -(b - 1) / a); /* second approximation */ } else { x = mean; } if (x > mean) x = mean; } else { /* Use expected value as first guess */ x = mean; } /* Do bisection to get closer */ x = bisect (x, P, a, b, 0.01, 0.01); { double lambda, dP, phi; unsigned int n = 0; start: dP = P - gsl_cdf_beta_P (x, a, b); phi = gsl_ran_beta_pdf (x, a, b); if (dP == 0.0 || n++ > 64) goto end; lambda = dP / GSL_MAX (2 * fabs (dP / x), phi); { double step0 = lambda; double step1 = -((a - 1) / x - (b - 1) / (1 - x)) * lambda * lambda / 2; double step = step0; if (fabs (step1) < fabs (step0)) { step += step1; } else { /* scale back step to a reasonable size when too large */ step *= 2 * fabs (step0 / step1); }; if (x + step > 0 && x + step < 1) { x += step; } else { x = sqrt (x) * sqrt (mean); /* try a new starting point */ } if (fabs (step0) > 1e-10 * x) goto start; } end: if (fabs(dP) > GSL_SQRT_DBL_EPSILON * P) { GSL_ERROR_VAL("inverse failed to converge", GSL_EFAILED, GSL_NAN); } return x; } } double gsl_cdf_beta_Qinv (const double Q, const double a, const double b) { if (Q < 0.0 || Q > 1.0) { CDF_ERROR ("Q must be inside range 0 < Q < 1", GSL_EDOM); } if (a < 0.0) { CDF_ERROR ("a < 0", GSL_EDOM); } if (b < 0.0) { CDF_ERROR ("b < 0", GSL_EDOM); } if (Q == 0.0) { return 1.0; } if (Q == 1.0) { return 0.0; } if (Q > 0.5) { return gsl_cdf_beta_Pinv (1 - Q, a, b); } else { return 1 - gsl_cdf_beta_Pinv (Q, b, a); }; }