/* cdf/tdistinv.c * * Copyright (C) 2007, 2010 Brian Gough * Copyright (C) 2002 Jason H. Stover. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include static double inv_cornish_fisher (double z, double nu) { double a = 1 / (nu - 0.5); double b = 48.0 / (a * a); double cf1 = z * (3 + z * z); double cf2 = z * (945 + z * z * (360 + z * z * (63 + z * z * 4))); double y = z - cf1 / b + cf2 / (10 * b * b); double t = GSL_SIGN (z) * sqrt (nu * expm1 (a * y * y)); return t; } double gsl_cdf_tdist_Pinv (const double P, const double nu) { double x, ptail; if (P == 1.0) { return GSL_POSINF; } else if (P == 0.0) { return GSL_NEGINF; } if (nu == 1.0) { x = tan (M_PI * (P - 0.5)); return x; } else if (nu == 2.0) { x = (2 * P - 1) / sqrt (2 * P * (1 - P)); return x; } ptail = (P < 0.5) ? P : 1 - P; if (sqrt (M_PI * nu / 2) * ptail > pow (0.05, nu / 2)) { double xg = gsl_cdf_ugaussian_Pinv (P); x = inv_cornish_fisher (xg, nu); } else { /* Use an asymptotic expansion of the tail of integral */ double beta = gsl_sf_beta (0.5, nu / 2); if (P < 0.5) { x = -sqrt (nu) * pow (beta * nu * P, -1.0 / nu); } else { x = sqrt (nu) * pow (beta * nu * (1 - P), -1.0 / nu); } /* Correct nu -> nu/(1+nu/x^2) in the leading term to account for higher order terms. This avoids overestimating x, which makes the iteration unstable due to the rapidly decreasing tails of the distribution. */ x /= sqrt (1 + nu / (x * x)); } { double dP, phi; unsigned int n = 0; start: dP = P - gsl_cdf_tdist_P (x, nu); phi = gsl_ran_tdist_pdf (x, nu); if (dP == 0.0 || n++ > 32) goto end; { double lambda = dP / phi; double step0 = lambda; double step1 = ((nu + 1) * x / (x * x + nu)) * (lambda * lambda / 4.0); double step = step0; if (fabs (step1) < fabs (step0)) { step += step1; } if (P > 0.5 && x + step < 0) x /= 2; else if (P < 0.5 && x + step > 0) x /= 2; else x += step; if (fabs (step) > 1e-10 * fabs (x)) goto start; } end: if (fabs(dP) > GSL_SQRT_DBL_EPSILON * P) { GSL_ERROR_VAL("inverse failed to converge", GSL_EFAILED, GSL_NAN); } return x; } } double gsl_cdf_tdist_Qinv (const double Q, const double nu) { double x, qtail; if (Q == 0.0) { return GSL_POSINF; } else if (Q == 1.0) { return GSL_NEGINF; } if (nu == 1.0) { x = tan (M_PI * (0.5 - Q)); return x; } else if (nu == 2.0) { x = (1 - 2 * Q) / sqrt (2 * Q * (1 - Q)); return x; } qtail = (Q < 0.5) ? Q : 1 - Q; if (sqrt (M_PI * nu / 2) * qtail > pow (0.05, nu / 2)) { double xg = gsl_cdf_ugaussian_Qinv (Q); x = inv_cornish_fisher (xg, nu); } else { /* Use an asymptotic expansion of the tail of integral */ double beta = gsl_sf_beta (0.5, nu / 2); if (Q < 0.5) { x = sqrt (nu) * pow (beta * nu * Q, -1.0 / nu); } else { x = -sqrt (nu) * pow (beta * nu * (1 - Q), -1.0 / nu); } /* Correct nu -> nu/(1+nu/x^2) in the leading term to account for higher order terms. This avoids overestimating x, which makes the iteration unstable due to the rapidly decreasing tails of the distribution. */ x /= sqrt (1 + nu / (x * x)); } { double dQ, phi; unsigned int n = 0; start: dQ = Q - gsl_cdf_tdist_Q (x, nu); phi = gsl_ran_tdist_pdf (x, nu); if (dQ == 0.0 || n++ > 32) goto end; { double lambda = - dQ / phi; double step0 = lambda; double step1 = ((nu + 1) * x / (x * x + nu)) * (lambda * lambda / 4.0); double step = step0; if (fabs (step1) < fabs (step0)) { step += step1; } if (Q < 0.5 && x + step < 0) x /= 2; else if (Q > 0.5 && x + step > 0) x /= 2; else x += step; if (fabs (step) > 1e-10 * fabs (x)) goto start; } } end: return x; }