.. index:: single: error function single: erf(x) single: erfc(x) The error function is described in Abramowitz & Stegun, Chapter 7. The functions in this section are declared in the header file :file:`gsl_sf_erf.h`. Error Function -------------- .. function:: double gsl_sf_erf (double x) int gsl_sf_erf_e (double x, gsl_sf_result * result) These routines compute the error function :math:`\erf(x)`, where :math:`\erf(x) = (2/\sqrt{\pi}) \int_0^x dt \exp(-t^2)`. .. Exceptional Return Values: none Complementary Error Function ---------------------------- .. function:: double gsl_sf_erfc (double x) int gsl_sf_erfc_e (double x, gsl_sf_result * result) These routines compute the complementary error function :math:`\erfc(x) = 1 - \erf(x) = (2/\sqrt{\pi}) \int_x^\infty \exp(-t^2)` .. Exceptional Return Values: none Log Complementary Error Function -------------------------------- .. function:: double gsl_sf_log_erfc (double x) int gsl_sf_log_erfc_e (double x, gsl_sf_result * result) These routines compute the logarithm of the complementary error function :math:`\log(\erfc(x))`. .. Exceptional Return Values: none Probability functions --------------------- The probability functions for the Normal or Gaussian distribution are described in Abramowitz & Stegun, Section 26.2. .. function:: double gsl_sf_erf_Z (double x) int gsl_sf_erf_Z_e (double x, gsl_sf_result * result) These routines compute the Gaussian probability density function :math:`Z(x) = (1/\sqrt{2\pi}) \exp(-x^2/2)` .. function:: double gsl_sf_erf_Q (double x) int gsl_sf_erf_Q_e (double x, gsl_sf_result * result) These routines compute the upper tail of the Gaussian probability function :math:`Q(x) = (1/\sqrt{2\pi}) \int_x^\infty dt \exp(-t^2/2)` .. Exceptional Return Values: none .. index:: single: hazard function, normal distribution single: Mills' ratio, inverse The *hazard function* for the normal distribution, also known as the inverse Mills' ratio, is defined as, .. only:: not texinfo .. math:: h(x) = {Z(x) \over Q(x)} = \sqrt{2 \over \pi} {\exp(-x^2 / 2) \over \erfc(x/\sqrt 2)} .. only:: texinfo :: h(x) = Z(x)/Q(x) = \sqrt{2/\pi} \exp(-x^2 / 2) / \erfc(x/\sqrt 2) It decreases rapidly as :math:`x` approaches :math:`-\infty` and asymptotes to :math:`h(x) \sim x` as :math:`x` approaches :math:`+\infty`. .. function:: double gsl_sf_hazard (double x) int gsl_sf_hazard_e (double x, gsl_sf_result * result) These routines compute the hazard function for the normal distribution. .. Exceptional Return Values: GSL_EUNDRFLW