.. index:: Fermi-Dirac function The functions described in this section are declared in the header file :file:`gsl_sf_fermi_dirac.h`. Complete Fermi-Dirac Integrals ------------------------------ .. index:: single: complete Fermi-Dirac integrals single: Fj(x), Fermi-Dirac integral The complete Fermi-Dirac integral :math:`F_j(x)` is given by, .. only:: not texinfo .. math:: F_j(x) := {1\over\Gamma(j+1)} \int_0^\infty dt {t^j \over (\exp(t-x) + 1)} .. only:: texinfo :: F_j(x) := (1/\Gamma(j+1)) \int_0^\infty dt (t^j / (\exp(t-x) + 1)) Note that the Fermi-Dirac integral is sometimes defined without the normalisation factor in other texts. .. function:: double gsl_sf_fermi_dirac_m1 (double x) int gsl_sf_fermi_dirac_m1_e (double x, gsl_sf_result * result) These routines compute the complete Fermi-Dirac integral with an index of :math:`-1`. This integral is given by :math:`F_{-1}(x) = e^x / (1 + e^x)`. .. Exceptional Return Values: GSL_EUNDRFLW .. function:: double gsl_sf_fermi_dirac_0 (double x) int gsl_sf_fermi_dirac_0_e (double x, gsl_sf_result * result) These routines compute the complete Fermi-Dirac integral with an index of :math:`0`. This integral is given by :math:`F_0(x) = \ln(1 + e^x)`. .. Exceptional Return Values: GSL_EUNDRFLW .. function:: double gsl_sf_fermi_dirac_1 (double x) int gsl_sf_fermi_dirac_1_e (double x, gsl_sf_result * result) These routines compute the complete Fermi-Dirac integral with an index of :math:`1`, :math:`F_1(x) = \int_0^\infty dt (t /(\exp(t-x)+1))`. .. Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW .. function:: double gsl_sf_fermi_dirac_2 (double x) int gsl_sf_fermi_dirac_2_e (double x, gsl_sf_result * result) These routines compute the complete Fermi-Dirac integral with an index of :math:`2`, :math:`F_2(x) = (1/2) \int_0^\infty dt (t^2 /(\exp(t-x)+1))`. .. Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW .. function:: double gsl_sf_fermi_dirac_int (int j, double x) int gsl_sf_fermi_dirac_int_e (int j, double x, gsl_sf_result * result) These routines compute the complete Fermi-Dirac integral with an integer index of :math:`j`, :math:`F_j(x) = (1/\Gamma(j+1)) \int_0^\infty dt (t^j /(\exp(t-x)+1))`. .. Complete integral F_j(x) for integer j .. Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW .. function:: double gsl_sf_fermi_dirac_mhalf (double x) int gsl_sf_fermi_dirac_mhalf_e (double x, gsl_sf_result * result) These routines compute the complete Fermi-Dirac integral :math:`F_{-1/2}(x)`. .. Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW .. function:: double gsl_sf_fermi_dirac_half (double x) int gsl_sf_fermi_dirac_half_e (double x, gsl_sf_result * result) These routines compute the complete Fermi-Dirac integral :math:`F_{1/2}(x)`. .. Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW .. function:: double gsl_sf_fermi_dirac_3half (double x) int gsl_sf_fermi_dirac_3half_e (double x, gsl_sf_result * result) These routines compute the complete Fermi-Dirac integral :math:`F_{3/2}(x)`. .. Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW Incomplete Fermi-Dirac Integrals -------------------------------- .. index:: single: incomplete Fermi-Dirac integral single: Fj(x,b), incomplete Fermi-Dirac integral The incomplete Fermi-Dirac integral :math:`F_j(x,b)` is given by, .. only:: not texinfo .. math:: F_j(x,b) := {1\over\Gamma(j+1)} \int_b^\infty dt {t^j \over (\exp(t-x) + 1)} .. only:: texinfo :: F_j(x,b) := (1/\Gamma(j+1)) \int_b^\infty dt (t^j / (\Exp(t-x) + 1)) .. function:: double gsl_sf_fermi_dirac_inc_0 (double x, double b) int gsl_sf_fermi_dirac_inc_0_e (double x, double b, gsl_sf_result * result) These routines compute the incomplete Fermi-Dirac integral with an index of zero, :math:`F_0(x,b) = \ln(1 + e^{b-x}) - (b-x)` .. Exceptional Return Values: GSL_EUNDRFLW, GSL_EDOM