.. index:: Gegenbauer functions The Gegenbauer polynomials are defined in Abramowitz & Stegun, Chapter 22, where they are known as Ultraspherical polynomials. The functions described in this section are declared in the header file :file:`gsl_sf_gegenbauer.h`. .. function:: double gsl_sf_gegenpoly_1 (double lambda, double x) double gsl_sf_gegenpoly_2 (double lambda, double x) double gsl_sf_gegenpoly_3 (double lambda, double x) int gsl_sf_gegenpoly_1_e (double lambda, double x, gsl_sf_result * result) int gsl_sf_gegenpoly_2_e (double lambda, double x, gsl_sf_result * result) int gsl_sf_gegenpoly_3_e (double lambda, double x, gsl_sf_result * result) These functions evaluate the Gegenbauer polynomials :math:`C^{(\lambda)}_n(x)` using explicit representations for :math:`n = 1, 2, 3`. .. Exceptional Return Values: none .. function:: double gsl_sf_gegenpoly_n (int n, double lambda, double x) int gsl_sf_gegenpoly_n_e (int n, double lambda, double x, gsl_sf_result * result) These functions evaluate the Gegenbauer polynomial :math:`C^{(\lambda)}_n(x)` for a specific value of :data:`n`, :data:`lambda`, :data:`x` subject to :math:`\lambda > -1/2`, :math:`n \ge 0`. .. Domain: lambda > -1/2, n >= 0 .. Exceptional Return Values: GSL_EDOM .. function:: int gsl_sf_gegenpoly_array (int nmax, double lambda, double x, double result_array[]) This function computes an array of Gegenbauer polynomials :math:`C^{(\lambda)}_n(x)` for :math:`n = 0, 1, 2, \dots, nmax`, subject to :math:`\lambda > -1/2`, :math:`nmax \ge 0`. .. Conditions: n = 0, 1, 2, ... nmax .. Domain: lambda > -1/2, nmax >= 0 .. Exceptional Return Values: GSL_EDOM