.. index:: single: Laguerre functions single: confluent hypergeometric function The generalized Laguerre polynomials, sometimes referred to as associated Laguerre polynomials, are defined in terms of confluent hypergeometric functions as .. only:: not texinfo .. math:: L^a_n(x) = {(a+1)_n \over n!} {}_1F_1(-n,a+1,x) .. only:: texinfo L^a_n(x) = ((a+1)_n / n!) 1F1(-n,a+1,x) where :math:`(a)_n` is the :ref:`Pochhammer symbol ` (rising factorial). They are related to the plain Laguerre polynomials :math:`L_n(x)` by :math:`L^0_n(x) = L_n(x)` and :math:`L^k_n(x) = (-1)^k (d^k/dx^k) L_{(n+k)}(x)` For more information see Abramowitz & Stegun, Chapter 22. The functions described in this section are declared in the header file :file:`gsl_sf_laguerre.h`. .. function:: double gsl_sf_laguerre_1 (double a, double x) double gsl_sf_laguerre_2 (double a, double x) double gsl_sf_laguerre_3 (double a, double x) int gsl_sf_laguerre_1_e (double a, double x, gsl_sf_result * result) int gsl_sf_laguerre_2_e (double a, double x, gsl_sf_result * result) int gsl_sf_laguerre_3_e (double a, double x, gsl_sf_result * result) These routines evaluate the generalized Laguerre polynomials :math:`L^a_1(x)`, :math:`L^a_2(x)`, :math:`L^a_3(x)` using explicit representations. .. Exceptional Return Values: none .. function:: double gsl_sf_laguerre_n (const int n, const double a, const double x) int gsl_sf_laguerre_n_e (int n, double a, double x, gsl_sf_result * result) These routines evaluate the generalized Laguerre polynomials :math:`L^a_n(x)` for :math:`a > -1`, :math:`n \ge 0`. .. Domain: a > -1.0, n >= 0 .. Evaluate generalized Laguerre polynomials. .. Exceptional Return Values: GSL_EDOM