.. index:: Zeta functions The Riemann zeta function is defined in Abramowitz & Stegun, Section 23.2. The functions described in this section are declared in the header file :file:`gsl_sf_zeta.h`. Riemann Zeta Function --------------------- .. index:: Riemann Zeta Function The Riemann zeta function is defined by the infinite sum .. math:: \zeta(s) = \sum_{k=1}^\infty k^{-s} .. function:: double gsl_sf_zeta_int (int n) int gsl_sf_zeta_int_e (int n, gsl_sf_result * result) These routines compute the Riemann zeta function :math:`\zeta(n)` for integer :data:`n`, :math:`n \ne 1`. .. Domain: n integer, n != 1 .. Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW .. function:: double gsl_sf_zeta (double s) int gsl_sf_zeta_e (double s, gsl_sf_result * result) These routines compute the Riemann zeta function :math:`\zeta(s)` for arbitrary :data:`s`, :math:`s \ne 1`. .. Domain: s != 1.0 .. Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW Riemann Zeta Function Minus One ------------------------------- For large positive argument, the Riemann zeta function approaches one. In this region the fractional part is interesting, and therefore we need a function to evaluate it explicitly. .. function:: double gsl_sf_zetam1_int (int n) int gsl_sf_zetam1_int_e (int n, gsl_sf_result * result) These routines compute :math:`\zeta(n) - 1` for integer :data:`n`, :math:`n \ne 1`. .. Domain: n integer, n != 1 .. Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW .. function:: double gsl_sf_zetam1 (double s) int gsl_sf_zetam1_e (double s, gsl_sf_result * result) These routines compute :math:`\zeta(s) - 1` for arbitrary :data:`s`, :math:`s \ne 1`. .. Domain: s != 1.0 .. Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW Hurwitz Zeta Function --------------------- .. index:: Hurwitz Zeta Function The Hurwitz zeta function is defined by .. math:: \zeta(s,q) = \sum_0^\infty (k+q)^{-s} .. function:: double gsl_sf_hzeta (double s, double q) int gsl_sf_hzeta_e (double s, double q, gsl_sf_result * result) These routines compute the Hurwitz zeta function :math:`\zeta(s,q)` for :math:`s > 1`, :math:`q > 0`. .. Domain: s > 1.0, q > 0.0 .. Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW, GSL_EOVRFLW Eta Function ------------ .. index:: Eta Function The eta function is defined by .. math:: \eta(s) = (1-2^{1-s}) \zeta(s) .. function:: double gsl_sf_eta_int (int n) int gsl_sf_eta_int_e (int n, gsl_sf_result * result) These routines compute the eta function :math:`\eta(n)` for integer :data:`n`. .. Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW .. function:: double gsl_sf_eta (double s) int gsl_sf_eta_e (double s, gsl_sf_result * result) These routines compute the eta function :math:`\eta(s)` for arbitrary :data:`s`. .. Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW