/* integration/test.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * Copyright (C) 2017, 2018 Patrick Alken * Copyright (C) 2017 Konrad Griessinger * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include "tests.h" #define SQRT15 3.8729833462074168852 #define SQRT30 5.4772255750516611346 #define SQRT70 8.3666002653407554798 #define CONST1 0.86113631159405257522 /* sqrt((3+2*sqrt(6./5))/7) */ #define CONST2 0.33998104358485626480 /* sqrt((3-2*sqrt(6./5))/7) */ #define CONST3 0.90617984593866399280 /* sqrt((5+2*sqrt(10./7)))/3 */ #define CONST4 0.53846931010568309104 /* sqrt((5-2*sqrt(10./7)))/3 */ gsl_function make_function (double (* f) (double, void *), double * p); gsl_function make_function (double (* f) (double, void *), double * p) { gsl_function f_new; f_new.function = f ; f_new.params = p ; return f_new; } struct counter_params { gsl_function * f; int neval; } ; double counter (double x, void * params); gsl_function make_counter (gsl_function * f, struct counter_params * p); double counter (double x, void * params) { struct counter_params * p = (struct counter_params *) params; p->neval++ ; /* increment counter */ return GSL_FN_EVAL(p->f, x); } gsl_function make_counter (gsl_function * f, struct counter_params * p) { gsl_function f_new; p->f = f; p->neval = 0 ; f_new.function = &counter ; f_new.params = p ; return f_new; } void my_error_handler (const char *reason, const char *file, int line, int err); static int test_fixed_quadrature(const gsl_integration_fixed_type * T, const size_t n, const double a, const double b, const double alpha, const double beta, const double tol, const double exact, const gsl_function * f, const char * desc) { int status = GSL_SUCCESS; gsl_integration_fixed_workspace * w = gsl_integration_fixed_alloc(T, n, a, b, alpha, beta); char buf[2048]; double result; sprintf(buf, "%s a=%g b=%g alpha=%g beta=%g", desc, a, b, alpha, beta); gsl_integration_fixed(f, &result, w); gsl_test_rel (result, exact, tol, "%s", buf); gsl_integration_fixed_free(w); return status; } int main (void) { gsl_ieee_env_setup (); gsl_set_error_handler (&my_error_handler); /* Test the basic Gauss-Kronrod rules with a smooth positive function. */ { double result = 0, abserr = 0, resabs = 0, resasc = 0 ; double exp_result = 7.716049357767090777E-02; double exp_abserr = 2.990224871000550874E-06; double exp_resabs = 7.716049357767090777E-02; double exp_resasc = 4.434273814139995384E-02; double alpha = 2.6 ; gsl_function f = make_function(&f1, &alpha) ; gsl_integration_qk15 (&f, 0.0, 1.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,exp_result,1e-15,"qk15(f1) smooth result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk15(f1) smooth abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk15(f1) smooth resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk15(f1) smooth resasc") ; gsl_integration_qk15 (&f, 1.0, 0.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,-exp_result,1e-15,"qk15(f1) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk15(f1) reverse abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk15(f1) reverse resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk15(f1) reverse resasc") ; } { double result = 0, abserr = 0, resabs = 0, resasc = 0 ; double exp_result = 7.716049379303084599E-02; double exp_abserr = 9.424302194248481445E-08; double exp_resabs = 7.716049379303084599E-02; double exp_resasc = 4.434311425038358484E-02; double alpha = 2.6 ; gsl_function f = make_function(&f1, &alpha); gsl_integration_qk21 (&f, 0.0, 1.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,exp_result,1e-15,"qk21(f1) smooth result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk21(f1) smooth abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk21(f1) smooth resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk21(f1) smooth resasc") ; gsl_integration_qk21 (&f, 1.0, 0.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,-exp_result,1e-15,"qk21(f1) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk21(f1) reverse abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk21(f1) reverse resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk21(f1) reverse resasc") ; } { double result = 0, abserr = 0, resabs = 0, resasc = 0 ; double exp_result = 7.716049382494900855E-02; double exp_abserr = 1.713503193600029893E-09; double exp_resabs = 7.716049382494900855E-02; double exp_resasc = 4.427995051868838933E-02; double alpha = 2.6 ; gsl_function f = make_function(&f1, &alpha); gsl_integration_qk31 (&f, 0.0, 1.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,exp_result,1e-15,"qk31(f1) smooth result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk31(f1) smooth abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk31(f1) smooth resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk31(f1) smooth resasc") ; gsl_integration_qk31 (&f, 1.0, 0.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,-exp_result,1e-15,"qk31(f1) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk31(f1) reverse abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk31(f1) reverse resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk31(f1) reverse resasc") ; } { double result = 0, abserr = 0, resabs = 0, resasc = 0 ; double exp_result = 7.716049382681375302E-02; double exp_abserr = 9.576386660975511224E-11; double exp_resabs = 7.716049382681375302E-02; double exp_resasc = 4.421521169637691873E-02; double alpha = 2.6 ; gsl_function f = make_function(&f1, &alpha); gsl_integration_qk41 (&f, 0.0, 1.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,exp_result,1e-15,"qk41(f1) smooth result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk41(f1) smooth abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk41(f1) smooth resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk41(f1) smooth resasc") ; gsl_integration_qk41 (&f, 1.0, 0.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,-exp_result,1e-15,"qk41(f1) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk41(f1) reverse abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk41(f1) reverse resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk41(f1) reverse resasc") ; } { double result = 0, abserr = 0, resabs = 0, resasc = 0 ; double exp_result = 7.716049382708510540E-02; double exp_abserr = 1.002079980317363772E-11; double exp_resabs = 7.716049382708510540E-02; double exp_resasc = 4.416474291216854892E-02; double alpha = 2.6 ; gsl_function f = make_function(&f1, &alpha); gsl_integration_qk51 (&f, 0.0, 1.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,exp_result,1e-15,"qk51(f1) smooth result") ; gsl_test_rel(abserr,exp_abserr,1e-5,"qk51(f1) smooth abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk51(f1) smooth resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk51(f1) smooth resasc") ; gsl_integration_qk51 (&f, 1.0, 0.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,-exp_result,1e-15,"qk51(f1) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-5,"qk51(f1) reverse abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk51(f1) reverse resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk51(f1) reverse resasc") ; } { double result = 0, abserr = 0, resabs = 0, resasc = 0 ; double exp_result = 7.716049382713800753E-02; double exp_abserr = 1.566060362296155616E-12; double exp_resabs = 7.716049382713800753E-02; double exp_resasc = 4.419287685934316506E-02; double alpha = 2.6 ; gsl_function f = make_function(&f1, &alpha); gsl_integration_qk61 (&f, 0.0, 1.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,exp_result,1e-15,"qk61(f1) smooth result") ; gsl_test_rel(abserr,exp_abserr,1e-5,"qk61(f1) smooth abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk61(f1) smooth resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk61(f1) smooth resasc") ; gsl_integration_qk61 (&f, 1.0, 0.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,-exp_result,1e-15,"qk61(f1) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-5,"qk61(f1) reverse abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk61(f1) reverse resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk61(f1) reverse resasc") ; } /* Now test the basic rules with a positive function that has a singularity. This should give large values of abserr which would find discrepancies in the abserr calculation. */ { double result = 0, abserr = 0, resabs = 0, resasc = 0 ; double exp_result = 1.555688196612745777E+01; double exp_abserr = 2.350164577239293706E+01; double exp_resabs = 1.555688196612745777E+01; double exp_resasc = 2.350164577239293706E+01; double alpha = -0.9 ; gsl_function f = make_function(&f1, &alpha); gsl_integration_qk15 (&f, 0.0, 1.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,exp_result,1e-15,"qk15(f1) singular result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk15(f1) singular abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk15(f1) singular resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk15(f1) singular resasc") ; gsl_integration_qk15 (&f, 1.0, 0.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,-exp_result,1e-15,"qk15(f1) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk15(f1) reverse abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk15(f1) reverse resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk15(f1) reverse resasc") ; } { double result = 0, abserr = 0, resabs = 0, resasc = 0 ; double exp_result = 1.799045317938126232E+01; double exp_abserr = 2.782360287710622515E+01; double exp_resabs = 1.799045317938126232E+01; double exp_resasc = 2.782360287710622515E+01; double alpha = -0.9 ; gsl_function f = make_function(&f1, &alpha); gsl_integration_qk21 (&f, 0.0, 1.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,exp_result,1e-15,"qk21(f1) singular result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk21(f1) singular abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk21(f1) singular resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk21(f1) singular resasc") ; gsl_integration_qk21 (&f, 1.0, 0.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,-exp_result,1e-15,"qk21(f1) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk21(f1) reverse abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk21(f1) reverse resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk21(f1) reverse resasc") ; } { double result = 0, abserr = 0, resabs = 0, resasc = 0 ; double exp_result = 2.081873305159121657E+01; double exp_abserr = 3.296500137482590276E+01; double exp_resabs = 2.081873305159121301E+01; double exp_resasc = 3.296500137482590276E+01; double alpha = -0.9 ; gsl_function f = make_function(&f1, &alpha); gsl_integration_qk31 (&f, 0.0, 1.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,exp_result,1e-15,"qk31(f1) singular result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk31(f1) singular abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk31(f1) singular resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk31(f1) singular resasc") ; gsl_integration_qk31 (&f, 1.0, 0.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,-exp_result,1e-15,"qk31(f1) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk31(f1) reverse abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk31(f1) reverse resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk31(f1) reverse resasc") ; } { double result = 0, abserr = 0, resabs = 0, resasc = 0 ; double exp_result = 2.288677623903126701E+01; double exp_abserr = 3.671538820274916048E+01; double exp_resabs = 2.288677623903126701E+01; double exp_resasc = 3.671538820274916048E+01; double alpha = -0.9 ; gsl_function f = make_function(&f1, &alpha); gsl_integration_qk41 (&f, 0.0, 1.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,exp_result,1e-15,"qk41(f1) singular result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk41(f1) singular abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk41(f1) singular resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk41(f1) singular resasc") ; gsl_integration_qk41 (&f, 1.0, 0.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,-exp_result,1e-15,"qk41(f1) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk41(f1) reverse abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk41(f1) reverse resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk41(f1) reverse resasc") ; } { double result = 0, abserr = 0, resabs = 0, resasc = 0 ; double exp_result = 2.449953612016972215E+01; double exp_abserr = 3.967771249391228849E+01; double exp_resabs = 2.449953612016972215E+01; double exp_resasc = 3.967771249391228849E+01; double alpha = -0.9 ; gsl_function f = make_function(&f1, &alpha); gsl_integration_qk51 (&f, 0.0, 1.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,exp_result,1e-15,"qk51(f1) singular result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk51(f1) singular abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk51(f1) singular resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk51(f1) singular resasc") ; gsl_integration_qk51 (&f, 1.0, 0.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,-exp_result,1e-15,"qk51(f1) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk51(f1) reverse abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk51(f1) reverse resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk51(f1) reverse resasc") ; } { double result = 0, abserr = 0, resabs = 0, resasc = 0 ; double exp_result = 2.583030240976628988E+01; double exp_abserr = 4.213750493076978643E+01; double exp_resabs = 2.583030240976628988E+01; double exp_resasc = 4.213750493076978643E+01; double alpha = -0.9 ; gsl_function f = make_function(&f1, &alpha); gsl_integration_qk61 (&f, 0.0, 1.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,exp_result,1e-15,"qk61(f1) singular result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk61(f1) singular abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk61(f1) singular resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk61(f1) singular resasc") ; gsl_integration_qk61 (&f, 1.0, 0.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,-exp_result,1e-15,"qk61(f1) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk61(f1) reverse abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk61(f1) reverse resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk61(f1) reverse resasc") ; } /* Test the basic Gauss-Kronrod rules with a smooth oscillating function, over an unsymmetric range. This should find any discrepancies in the abscissae. */ { double result = 0, abserr = 0, resabs = 0, resasc = 0 ; double exp_result =-7.238969575483799046E-01; double exp_abserr = 8.760080200939757174E-06; double exp_resabs = 1.165564172429140788E+00; double exp_resasc = 9.334560307787327371E-01; double alpha = 1.3 ; gsl_function f = make_function(&f3, &alpha); gsl_integration_qk15 (&f, 0.3, 2.71, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,exp_result,1e-15,"qk15(f3) oscill result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk15(f3) oscill abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk15(f3) oscill resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk15(f3) oscill resasc") ; gsl_integration_qk15 (&f, 2.71, 0.3, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,-exp_result,1e-15,"qk15(f3) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk15(f3) reverse abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk15(f3) reverse resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk15(f3) reverse resasc") ; } { double result = 0, abserr = 0, resabs = 0, resasc = 0 ; double exp_result =-7.238969575482959717E-01; double exp_abserr = 7.999213141433641888E-11; double exp_resabs = 1.150829032708484023E+00; double exp_resasc = 9.297591249133687619E-01; double alpha = 1.3 ; gsl_function f = make_function(&f3, &alpha); gsl_integration_qk21 (&f, 0.3, 2.71, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,exp_result,1e-15,"qk21(f3) oscill result") ; gsl_test_rel(abserr,exp_abserr,1e-5,"qk21(f3) oscill abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk21(f3) oscill resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk21(f3) oscill resasc") ; gsl_integration_qk21 (&f, 2.71, 0.3, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,-exp_result,1e-15,"qk21(f3) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-5,"qk21(f3) reverse abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk21(f3) reverse resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk21(f3) reverse resasc") ; } { double result = 0, abserr = 0, resabs = 0, resasc = 0 ; double exp_result =-7.238969575482959717E-01; double exp_abserr = 1.285805464427459261E-14; double exp_resabs = 1.158150602093290571E+00; double exp_resasc = 9.277828092501518853E-01; double alpha = 1.3 ; gsl_function f = make_function(&f3, &alpha); gsl_integration_qk31 (&f, 0.3, 2.71, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,exp_result,1e-15,"qk31(f3) oscill result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk31(f3) oscill abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk31(f3) oscill resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk31(f3) oscill resasc") ; gsl_integration_qk31 (&f, 2.71, 0.3, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,-exp_result,1e-15,"qk31(f3) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk31(f3) reverse abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk31(f3) reverse resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk31(f3) reverse resasc") ; } { double result = 0, abserr = 0, resabs = 0, resasc = 0 ; double exp_result =-7.238969575482959717E-01; double exp_abserr = 1.286535726271015626E-14; double exp_resabs = 1.158808363486595328E+00; double exp_resasc = 9.264382258645686985E-01; double alpha = 1.3 ; gsl_function f = make_function(&f3, &alpha); gsl_integration_qk41 (&f, 0.3, 2.71, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,exp_result,1e-15,"qk41(f3) oscill result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk41(f3) oscill abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk41(f3) oscill resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk41(f3) oscill resasc") ; gsl_integration_qk41 (&f, 2.71, 0.3, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,-exp_result,1e-15,"qk41(f3) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk41(f3) reverse abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk41(f3) reverse resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk41(f3) reverse resasc") ; } { double result = 0, abserr = 0, resabs = 0, resasc = 0 ; double exp_result =-7.238969575482961938E-01; double exp_abserr = 1.285290995039385778E-14; double exp_resabs = 1.157687209264406381E+00; double exp_resasc = 9.264666884071264263E-01; double alpha = 1.3 ; gsl_function f = make_function(&f3, &alpha); gsl_integration_qk51 (&f, 0.3, 2.71, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,exp_result,1e-15,"qk51(f3) oscill result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk51(f3) oscill abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk51(f3) oscill resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk51(f3) oscill resasc") ; gsl_integration_qk51 (&f, 2.71, 0.3, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,-exp_result,1e-15,"qk51(f3) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk51(f3) reverse abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk51(f3) reverse resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk51(f3) reverse resasc") ; } { double result = 0, abserr = 0, resabs = 0, resasc = 0 ; double exp_result =-7.238969575482959717E-01; double exp_abserr = 1.286438572027470736E-14; double exp_resabs = 1.158720854723590099E+00; double exp_resasc = 9.270469641771273972E-01; double alpha = 1.3 ; gsl_function f = make_function(&f3, &alpha); gsl_integration_qk61 (&f, 0.3, 2.71, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,exp_result,1e-15,"qk61(f3) oscill result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk61(f3) oscill abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk61(f3) oscill resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk61(f3) oscill resasc") ; gsl_integration_qk61 (&f, 2.71, 0.3, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,-exp_result,1e-15,"qk61(f3) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk61(f3) reverse abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk61(f3) reverse resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk61(f3) reverse resasc") ; } /* Test the non-adaptive gaussian integrator QNG */ { int status = 0; size_t neval = 0 ; double result = 0, abserr = 0 ; double exp_result = 7.716049379303083211E-02; double exp_abserr = 9.424302199601294244E-08; int exp_neval = 21; int exp_ier = 0; double alpha = 2.6 ; gsl_function f = make_function(&f1, &alpha); status = gsl_integration_qng (&f, 0.0, 1.0, 1e-1, 0.0, &result, &abserr, &neval) ; gsl_test_rel(result,exp_result,1e-15,"qng(f1) smooth result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qng(f1) smooth abserr") ; gsl_test_int((int)neval,exp_neval,"qng(f1) smooth neval") ; gsl_test_int(status,exp_ier,"qng(f1) smooth status") ; status = gsl_integration_qng (&f, 1.0, 0.0, 1e-1, 0.0, &result, &abserr, &neval) ; gsl_test_rel(result,-exp_result,1e-15,"qng(f1) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qng(f1) reverse abserr") ; gsl_test_int((int)neval,exp_neval,"qng(f1) reverse neval") ; gsl_test_int(status,exp_ier,"qng(f1) reverse status") ; } { int status = 0; size_t neval = 0 ; double result = 0, abserr = 0 ; double exp_result = 7.716049382706505200E-02; double exp_abserr = 2.666893044866214501E-12; int exp_neval = 43; int exp_ier = 0; double alpha = 2.6 ; gsl_function f = make_function(&f1, &alpha); status = gsl_integration_qng (&f, 0.0, 1.0, 0.0, 1e-9, &result, &abserr, &neval) ; gsl_test_rel(result,exp_result,1e-15,"qng(f1) smooth 43pt result") ; gsl_test_rel(abserr,exp_abserr,1e-5,"qng(f1) smooth 43pt abserr") ; gsl_test_int((int)neval,exp_neval,"qng(f1) smooth 43pt neval") ; gsl_test_int(status,exp_ier,"qng(f1) smooth 43pt status") ; status = gsl_integration_qng (&f, 1.0, 0.0, 0.0, 1e-9, &result, &abserr, &neval) ; gsl_test_rel(result,-exp_result,1e-15,"qng(f1) reverse 43pt result") ; gsl_test_rel(abserr,exp_abserr,1e-5,"qng(f1) reverse 43pt abserr") ; gsl_test_int((int)neval,exp_neval,"qng(f1) reverse 43pt neval") ; gsl_test_int(status,exp_ier,"qng(f1) reverse 43pt status") ; } { int status; size_t neval = 0 ; double result = 0, abserr = 0 ; double exp_result =-7.238969575482961938E-01; double exp_abserr = 1.277676889520056369E-14; int exp_neval = 43; int exp_ier = 0; double alpha = 1.3 ; gsl_function f = make_function(&f3, &alpha); status = gsl_integration_qng (&f, 0.3, 2.71, 0.0, 1e-12, &result, &abserr, &neval) ; gsl_test_rel(result,exp_result,1e-15,"qnq(f3) oscill result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qng(f3) oscill abserr") ; gsl_test_int((int)neval,exp_neval,"qng(f3) oscill neval") ; gsl_test_int(status,exp_ier,"qng(f3) oscill status") ; status = gsl_integration_qng (&f, 2.71, 0.3, 0.0, 1e-12, &result, &abserr, &neval) ; gsl_test_rel(result,-exp_result,1e-15,"qnq(f3) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qng(f3) reverse abserr") ; gsl_test_int((int)neval,exp_neval,"qng(f3) reverse neval") ; gsl_test_int(status,exp_ier,"qng(f3) reverse status") ; } { int status = 0; size_t neval = 0 ; double result = 0, abserr = 0 ; double exp_result = 7.716049382716029525E-02; double exp_abserr = 8.566535680046930668E-16; int exp_neval = 87; int exp_ier = 0; double alpha = 2.6 ; gsl_function f = make_function(&f1, &alpha); status = gsl_integration_qng (&f, 0.0, 1.0, 0.0, 1e-13, &result, &abserr, &neval) ; gsl_test_rel(result,exp_result,1e-15,"qng(f1) 87pt smooth result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qng(f1) 87pt smooth abserr") ; gsl_test_int((int)neval,exp_neval,"qng(f1) 87pt smooth neval") ; gsl_test_int(status,exp_ier,"qng(f1) 87pt smooth status") ; status = gsl_integration_qng (&f, 1.0, 0.0, 0.0, 1e-13, &result, &abserr, &neval) ; gsl_test_rel(result,-exp_result,1e-15,"qng(f1) 87pt reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qng(f1) 87pt reverse abserr") ; gsl_test_int((int)neval,exp_neval,"qng(f1) 87pt reverse neval") ; gsl_test_int(status,exp_ier,"qng(f1) 87pt reverse status") ; } { int status = 0; size_t neval = 0 ; double result = 0, abserr = 0 ; double exp_result = 3.222948711817264211E+01; double exp_abserr = 2.782360287710622870E+01; int exp_neval = 87; int exp_ier = GSL_ETOL; double alpha = -0.9 ; gsl_function f = make_function(&f1, &alpha); status = gsl_integration_qng (&f, 0.0, 1.0, 0.0, 1e-3, &result, &abserr, &neval) ; gsl_test_rel(result,exp_result,1e-15,"qng(f1) sing beyond 87pt result"); gsl_test_rel(abserr,exp_abserr,1e-7,"qng(f1) sing beyond 87pt abserr"); gsl_test_int((int)neval,exp_neval,"qng(f1) sing beyond 87pt neval") ; gsl_test_int(status,exp_ier,"qng(f1) sing beyond 87pt status") ; status = gsl_integration_qng (&f, 1.0, 0.0, 0.0, 1e-3, &result, &abserr, &neval) ; gsl_test_rel(result,-exp_result,1e-15,"qng(f1) reverse beyond 87pt result"); gsl_test_rel(abserr,exp_abserr,1e-7,"qng(f1) rev beyond 87pt abserr"); gsl_test_int((int)neval,exp_neval,"qng(f1) rev beyond 87pt neval") ; gsl_test_int(status,exp_ier,"qng(f1) rev beyond 87pt status") ; } /* Test the adaptive integrator QAG */ { int status = 0, i; struct counter_params p; double result = 0, abserr=0; gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000) ; double exp_result = 7.716049382715854665E-02 ; double exp_abserr = 6.679384885865053037E-12 ; int exp_neval = 165; int exp_ier = 0; int exp_last = 6; double a[6] = { 0, 0.5, 0.25, 0.125, 0.0625, 0.03125 } ; double b[6] = { 0.03125, 1, 0.5, 0.25, 0.125, 0.0625 } ; double r[6] = { 3.966769831709074375E-06, 5.491842501998222409E-02, 1.909827770934243926E-02, 2.776531175604360531E-03, 3.280661030752063693E-04, 3.522704932261797744E-05 } ; double e[6] = { 6.678528276336181873E-12, 6.097169993333454062E-16, 2.120334764359736934E-16, 3.082568839745514608E-17, 3.642265412331439511E-18, 3.910988124757650942E-19 } ; int order[6] = { 1, 2, 3, 4, 5, 6 } ; double alpha = 2.6 ; gsl_function f = make_function(&f1, &alpha) ; gsl_function fc = make_counter(&f, &p) ; status = gsl_integration_qag (&fc, 0.0, 1.0, 0.0, 1e-10, w->limit, GSL_INTEG_GAUSS15, w, &result, &abserr) ; gsl_test_rel(result,exp_result,1e-15,"qag(f1) smooth result") ; gsl_test_rel(abserr,exp_abserr,1e-6,"qag(f1) smooth abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qag(f1) smooth neval") ; gsl_test_int((int)(w->size),exp_last,"qag(f1) smooth last") ; gsl_test_int(status,exp_ier,"qag(f1) smooth status") ; for (i = 0; i < 6 ; i++) gsl_test_rel(w->alist[i],a[i],1e-15,"qag(f1) smooth alist") ; for (i = 0; i < 6 ; i++) gsl_test_rel(w->blist[i],b[i],1e-15,"qag(f1) smooth blist") ; for (i = 0; i < 6 ; i++) gsl_test_rel(w->rlist[i],r[i],1e-15,"qag(f1) smooth rlist") ; for (i = 0; i < 6 ; i++) gsl_test_rel(w->elist[i],e[i],1e-6,"qag(f1) smooth elist") ; for (i = 0; i < 6 ; i++) gsl_test_int((int)w->order[i],order[i]-1,"qag(f1) smooth order") ; p.neval = 0; status = gsl_integration_qag (&fc, 1.0, 0.0, 0.0, 1e-10, w->limit, GSL_INTEG_GAUSS15, w, &result, &abserr) ; gsl_test_rel(result,-exp_result,1e-15,"qag(f1) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-6,"qag(f1) reverse abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qag(f1) reverse neval") ; gsl_test_int((int)(w->size),exp_last,"qag(f1) reverse last") ; gsl_test_int(status,exp_ier,"qag(f1) reverse status") ; gsl_integration_workspace_free (w) ; } /* Test the same function using an absolute error bound and the 21-point rule */ { int status = 0, i; struct counter_params p; double result = 0, abserr=0; gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000) ; double exp_result = 7.716049382716050342E-02 ; double exp_abserr = 2.227969521869139532E-15 ; int exp_neval = 315; int exp_ier = 0; int exp_last = 8; double a[8] = { 0, 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625, 0.0078125 } ; double b[8] = { 0.0078125, 1, 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625 } ; double r[8] = { 3.696942726831556522E-08, 5.491842501998223103E-02, 1.909827770934243579E-02, 2.776531175604360097E-03, 3.280661030752062609E-04, 3.522704932261797744E-05, 3.579060884684503576E-06, 3.507395216921808047E-07 } ; double e[8] = { 1.371316364034059572E-15, 6.097169993333454062E-16, 2.120334764359736441E-16, 3.082568839745514608E-17, 3.642265412331439511E-18, 3.910988124757650460E-19, 3.973555800712018091E-20, 3.893990926286736620E-21 } ; int order[8] = { 1, 2, 3, 4, 5, 6, 7, 8 } ; double alpha = 2.6 ; gsl_function f = make_function(&f1, &alpha); gsl_function fc = make_counter(&f, &p) ; status = gsl_integration_qag (&fc, 0.0, 1.0, 1e-14, 0.0, w->limit, GSL_INTEG_GAUSS21, w, &result, &abserr) ; gsl_test_rel(result,exp_result,1e-15,"qag(f1,21pt) smooth result") ; gsl_test_rel(abserr,exp_abserr,1e-6,"qag(f1,21pt) smooth abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qag(f1,21pt) smooth neval") ; gsl_test_int((int)(w->size),exp_last,"qag(f1,21pt) smooth last") ; gsl_test_int(status,exp_ier,"qag(f1,21pt) smooth status") ; for (i = 0; i < 8 ; i++) gsl_test_rel(w->alist[i],a[i],1e-15,"qag(f1,21pt) smooth alist") ; for (i = 0; i < 8 ; i++) gsl_test_rel(w->blist[i],b[i],1e-15,"qag(f1,21pt) smooth blist") ; for (i = 0; i < 8 ; i++) gsl_test_rel(w->rlist[i],r[i],1e-15,"qag(f1,21pt) smooth rlist") ; for (i = 0; i < 8 ; i++) gsl_test_rel(w->elist[i],e[i],1e-6,"qag(f1,21pt) smooth elist") ; for (i = 0; i < 8 ; i++) gsl_test_int((int)w->order[i],order[i]-1,"qag(f1,21pt) smooth order"); p.neval = 0; status = gsl_integration_qag (&fc, 1.0, 0.0, 1e-14, 0.0, w->limit, GSL_INTEG_GAUSS21, w, &result, &abserr) ; gsl_test_rel(result,-exp_result,1e-15,"qag(f1,21pt) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-6,"qag(f1,21pt) reverse abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qag(f1,21pt) reverse neval") ; gsl_test_int((int)(w->size),exp_last,"qag(f1,21pt) reverse last") ; gsl_test_int(status,exp_ier,"qag(f1,21pt) reverse status") ; gsl_integration_workspace_free (w) ; } /* Adaptive integration of an oscillatory function which terminates because of roundoff error, uses the 31-pt rule */ { int status = 0; struct counter_params p; double result = 0, abserr=0; gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000) ; double exp_result = -7.238969575482959717E-01; double exp_abserr = 1.285805464427459261E-14; int exp_neval = 31; int exp_ier = GSL_EROUND; int exp_last = 1; double alpha = 1.3 ; gsl_function f = make_function(&f3, &alpha); gsl_function fc = make_counter(&f, &p) ; status = gsl_integration_qag (&fc, 0.3, 2.71, 1e-14, 0.0, w->limit, GSL_INTEG_GAUSS31, w, &result, &abserr) ; gsl_test_rel(result,exp_result,1e-15,"qag(f3,31pt) oscill result"); gsl_test_rel(abserr,exp_abserr,1e-6,"qag(f3,31pt) oscill abserr"); gsl_test_int((int)(p.neval),exp_neval,"qag(f3,31pt) oscill neval") ; gsl_test_int((int)(w->size),exp_last,"qag(f3,31pt) oscill last") ; gsl_test_int(status,exp_ier,"qag(f3,31pt) oscill status") ; p.neval = 0; status = gsl_integration_qag (&fc, 2.71, 0.3, 1e-14, 0.0, w->limit, GSL_INTEG_GAUSS31, w, &result, &abserr) ; gsl_test_rel(result,-exp_result,1e-15,"qag(f3,31pt) reverse result"); gsl_test_rel(abserr,exp_abserr,1e-6,"qag(f3,31pt) reverse abserr"); gsl_test_int((int)(p.neval),exp_neval,"qag(f3,31pt) reverse neval") ; gsl_test_int((int)(w->size),exp_last,"qag(f3,31pt) reverse last") ; gsl_test_int(status,exp_ier,"qag(f3,31pt) reverse status") ; gsl_integration_workspace_free (w) ; } /* Check the singularity detection (singularity at x=-0.1 in this example) */ { int status = 0; struct counter_params p; double result = 0, abserr=0; gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000) ; int exp_neval = 5151; int exp_ier = GSL_ESING; int exp_last = 51; double alpha = 2.0 ; gsl_function f = make_function(&f16, &alpha); gsl_function fc = make_counter(&f, &p) ; status = gsl_integration_qag (&fc, -1.0, 1.0, 1e-14, 0.0, w->limit, GSL_INTEG_GAUSS51, w, &result, &abserr) ; gsl_test_int((int)(p.neval),exp_neval,"qag(f16,51pt) sing neval") ; gsl_test_int((int)(w->size),exp_last,"qag(f16,51pt) sing last") ; gsl_test_int(status,exp_ier,"qag(f16,51pt) sing status") ; p.neval = 0; status = gsl_integration_qag (&fc, 1.0, -1.0, 1e-14, 0.0, w->limit, GSL_INTEG_GAUSS51, w, &result, &abserr) ; gsl_test_int((int)(p.neval),exp_neval,"qag(f16,51pt) rev neval") ; gsl_test_int((int)(w->size),exp_last,"qag(f16,51pt) rev last") ; gsl_test_int(status,exp_ier,"qag(f16,51pt) rev status") ; gsl_integration_workspace_free (w) ; } /* Check for hitting the iteration limit */ { int status = 0, i; struct counter_params p; double result = 0, abserr=0; gsl_integration_workspace * w = gsl_integration_workspace_alloc (3) ; double exp_result = 9.565151449233894709 ; double exp_abserr = 1.570369823891028460E+01; int exp_neval = 305; int exp_ier = GSL_EMAXITER; int exp_last = 3; double a[3] = { -5.000000000000000000E-01, 0.000000000000000000, -1.000000000000000000 } ; double b[3] = { 0.000000000000000000, 1.000000000000000000, -5.000000000000000000E-01 } ; double r[3] = { 9.460353469435913709, 9.090909090909091161E-02, 1.388888888888888812E-02 } ; double e[3] = { 1.570369823891028460E+01, 1.009293658750142399E-15, 1.541976423090495140E-16 } ; int order[3] = { 1, 2, 3 } ; double alpha = 1.0 ; gsl_function f = make_function(&f16, &alpha); gsl_function fc = make_counter(&f, &p) ; status = gsl_integration_qag (&fc, -1.0, 1.0, 1e-14, 0.0, w->limit, GSL_INTEG_GAUSS61, w, &result, &abserr) ; gsl_test_rel(result,exp_result,1e-15,"qag(f16,61pt) limit result") ; gsl_test_rel(abserr,exp_abserr,1e-6,"qag(f16,61pt) limit abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qag(f16,61pt) limit neval") ; gsl_test_int((int)(w->size),exp_last,"qag(f16,61pt) limit last") ; gsl_test_int(status,exp_ier,"qag(f16,61pt) limit status") ; for (i = 0; i < 3 ; i++) gsl_test_rel(w->alist[i],a[i],1e-15,"qag(f16,61pt) limit alist") ; for (i = 0; i < 3 ; i++) gsl_test_rel(w->blist[i],b[i],1e-15,"qag(f16,61pt) limit blist") ; for (i = 0; i < 3 ; i++) gsl_test_rel(w->rlist[i],r[i],1e-15,"qag(f16,61pt) limit rlist") ; for (i = 0; i < 3 ; i++) gsl_test_rel(w->elist[i],e[i],1e-6,"qag(f16,61pt) limit elist") ; for (i = 0; i < 3 ; i++) gsl_test_int((int)w->order[i],order[i]-1,"qag(f16,61pt) limit order"); p.neval = 0; status = gsl_integration_qag (&fc, 1.0, -1.0, 1e-14, 0.0, w->limit, GSL_INTEG_GAUSS61, w, &result, &abserr) ; gsl_test_rel(result,-exp_result,1e-15,"qag(f16,61pt) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-6,"qag(f16,61pt) reverse abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qag(f16,61pt) reverse neval") ; gsl_test_int((int)(w->size),exp_last,"qag(f16,61pt) reverse last") ; gsl_test_int(status,exp_ier,"qag(f16,61pt) reverse status") ; gsl_integration_workspace_free (w) ; } /* Test the adaptive integrator with extrapolation QAGS */ { int status = 0, i; struct counter_params p; double result = 0, abserr=0; gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000) ; double exp_result = 7.716049382715789440E-02 ; double exp_abserr = 2.216394961010438404E-12 ; int exp_neval = 189; int exp_ier = 0; int exp_last = 5; double a[5] = { 0, 0.5, 0.25, 0.125, 0.0625 } ; double b[5] = { 0.0625, 1, 0.5, 0.25, 0.125 } ; double r[5] = { 3.919381915366914693E-05, 5.491842501998223103E-02, 1.909827770934243579E-02, 2.776531175604360097E-03, 3.280661030752062609E-04 } ; double e[5] = { 2.215538742580964735E-12, 6.097169993333454062E-16, 2.120334764359736441E-16, 3.082568839745514608E-17, 3.642265412331439511E-18 } ; int order[5] = { 1, 2, 3, 4, 5 } ; double alpha = 2.6 ; gsl_function f = make_function(&f1, &alpha); gsl_function fc = make_counter(&f, &p) ; status = gsl_integration_qags (&fc, 0.0, 1.0, 0.0, 1e-10, w->limit, w, &result, &abserr) ; gsl_test_rel(result,exp_result,1e-15,"qags(f1) smooth result") ; gsl_test_rel(abserr,exp_abserr,1e-6,"qags(f1) smooth abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qags(f1) smooth neval") ; gsl_test_int((int)(w->size),exp_last,"qags(f1) smooth last") ; gsl_test_int(status,exp_ier,"qags(f1) smooth status") ; for (i = 0; i < 5 ; i++) gsl_test_rel(w->alist[i],a[i],1e-15,"qags(f1) smooth alist") ; for (i = 0; i < 5 ; i++) gsl_test_rel(w->blist[i],b[i],1e-15,"qags(f1) smooth blist") ; for (i = 0; i < 5 ; i++) gsl_test_rel(w->rlist[i],r[i],1e-15,"qags(f1) smooth rlist") ; for (i = 0; i < 5 ; i++) gsl_test_rel(w->elist[i],e[i],1e-6,"qags(f1) smooth elist") ; for (i = 0; i < 5 ; i++) gsl_test_int((int)w->order[i],order[i]-1,"qags(f1) smooth order") ; p.neval = 0; status = gsl_integration_qags (&fc, 1.0, 0.0, 0.0, 1e-10, w->limit, w, &result, &abserr) ; gsl_test_rel(result,-exp_result,1e-15,"qags(f1) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-6,"qags(f1) reverse abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qags(f1) reverse neval") ; gsl_test_int((int)(w->size),exp_last,"qags(f1) reverse last") ; gsl_test_int(status,exp_ier,"qags(f1) reverse status") ; gsl_integration_workspace_free (w) ; } /* Test f11 using an absolute error bound */ { int status = 0, i; struct counter_params p; double result = 0, abserr=0; gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000) ; /* All results are for GSL_IEEE_MODE=double-precision */ double exp_result = -5.908755278982136588E+03 ; double exp_abserr = 1.299646281053874554E-10 ; int exp_neval = 357; int exp_ier = 0; int exp_last = 9; double a[9] = { 1.000000000000000000E+00, 5.005000000000000000E+02, 2.507500000000000000E+02, 1.258750000000000000E+02, 6.343750000000000000E+01, 3.221875000000000000E+01, 1.660937500000000000E+01, 8.804687500000000000E+00, 4.902343750000000000E+00 } ; double b[9] = { 4.902343750000000000E+00, 1.000000000000000000E+03, 5.005000000000000000E+02, 2.507500000000000000E+02, 1.258750000000000000E+02, 6.343750000000000000E+01, 3.221875000000000000E+01, 1.660937500000000000E+01, 8.804687500000000000E+00 } ; double r[9] = { -3.890977835520834649E+00, -3.297343675805121620E+03, -1.475904154146372775E+03, -6.517404019686431411E+02, -2.829354222635842007E+02, -1.201692001973227519E+02, -4.959999906099650246E+01, -1.971441499411640308E+01, -7.457032710459004399E+00 } ; double e[9] = { 6.448276035006137169E-11, 3.660786868980994028E-11, 1.638582774073219226E-11, 7.235772003440423011E-12, 3.141214202790722909E-12, 1.334146129098576244E-12, 5.506706097890446534E-13, 2.188739744348345039E-13, 8.278969410534525339E-14 } ; int order[9] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 } ; double alpha = 2.0 ; gsl_function f = make_function(&f11, &alpha); gsl_function fc = make_counter(&f, &p) ; status = gsl_integration_qags (&fc, 1.0, 1000.0, 1e-7, 0.0, w->limit, w, &result, &abserr) ; gsl_test_rel(result,exp_result,1e-15,"qags(f11) smooth result") ; gsl_test_rel(abserr,exp_abserr,1e-3,"qags(f11) smooth abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qags(f11) smooth neval") ; gsl_test_int((int)(w->size),exp_last,"qags(f11) smooth last") ; gsl_test_int(status,exp_ier,"qags(f11) smooth status") ; for (i = 0; i < 9 ; i++) gsl_test_rel(w->alist[i],a[i],1e-15,"qags(f11) smooth alist") ; for (i = 0; i < 9 ; i++) gsl_test_rel(w->blist[i],b[i],1e-15,"qags(f11) smooth blist") ; for (i = 0; i < 9 ; i++) gsl_test_rel(w->rlist[i],r[i],1e-15,"qags(f11) smooth rlist") ; for (i = 0; i < 9 ; i++) gsl_test_rel(w->elist[i],e[i],1e-5,"qags(f11) smooth elist") ; for (i = 0; i < 9 ; i++) gsl_test_int((int)w->order[i],order[i]-1,"qags(f11) smooth order"); p.neval = 0; status = gsl_integration_qags (&fc, 1000.0, 1.0, 1e-7, 0.0, w->limit, w, &result, &abserr) ; gsl_test_rel(result,-exp_result,1e-15,"qags(f11) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-3,"qags(f11) reverse abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qags(f11) reverse neval") ; gsl_test_int((int)(w->size),exp_last,"qags(f11) reverse last") ; gsl_test_int(status,exp_ier,"qags(f11) reverse status") ; gsl_integration_workspace_free (w) ; } /* Test infinite range integral f455 using a relative error bound */ { int status = 0, i; struct counter_params p; double result = 0, abserr=0; gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000) ; /* All results are for GSL_IEEE_MODE=double-precision */ double exp_result = -3.616892186127022568E-01 ; double exp_abserr = 3.016716913328831851E-06; int exp_neval = 285; int exp_ier = 0; int exp_last = 10; double a[10] = { 9.687500000000000000E-01, 0.000000000000000000E+00, 5.000000000000000000E-01, 2.500000000000000000E-01, 7.500000000000000000E-01, 1.250000000000000000E-01, 8.750000000000000000E-01, 6.250000000000000000E-02, 9.375000000000000000E-01, 3.125000000000000000E-02 } ; double b[10] = { 1.000000000000000000E+00, 3.125000000000000000E-02, 7.500000000000000000E-01, 5.000000000000000000E-01, 8.750000000000000000E-01, 2.500000000000000000E-01, 9.375000000000000000E-01, 1.250000000000000000E-01, 9.687500000000000000E-01, 6.250000000000000000E-02 } ; double r[10] = { -1.390003415539725340E-01, 1.429785306003466313E-03, -1.229943369113085765E-02, 2.995321156568048898E-03, -4.980050133751051655E-02, 2.785385934678596704E-03, -8.653752279614615461E-02, 1.736218164975512294E-03, -8.398745675010892142E-02, 1.041689192004495576E-03 } ; double e[10] = { 2.395037249893453013E-02, 2.161214992172538524E-04, 5.720644840858777846E-14, 3.325474514168701167E-17, 3.147380432198176412E-14, 3.092399597147240624E-17, 9.607595030230581153E-16, 1.927589382528252344E-17, 9.324480826368044019E-16, 1.156507325466566521E-17 } ; int order[10] = { 1, 2, 3, 5, 7, 9, 4, 6, 8, 10 } ; gsl_function f = make_function(&f455, 0); gsl_function fc = make_counter(&f, &p) ; status = gsl_integration_qagiu (&fc, 0.0, 0.0, 1.0e-3, w->limit, w, &result, &abserr) ; gsl_test_rel(result,exp_result,1e-14,"qagiu(f455) smooth result") ; gsl_test_rel(abserr,exp_abserr,1e-5,"qagiu(f455) smooth abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qagiu(f455) smooth neval") ; gsl_test_int((int)(w->size),exp_last,"qagiu(f455) smooth last") ; gsl_test_int(status,exp_ier,"qagiu(f455) smooth status") ; for (i = 0; i < 10 ; i++) gsl_test_rel(w->alist[i],a[i],1e-15,"qagiu(f455) smooth alist") ; for (i = 0; i < 10 ; i++) gsl_test_rel(w->blist[i],b[i],1e-15,"qagiu(f455) smooth blist") ; for (i = 0; i < 10 ; i++) gsl_test_rel(w->rlist[i],r[i],1e-15,"qagiu(f455) smooth rlist") ; for (i = 0; i < 10 ; i++) gsl_test_rel(w->elist[i],e[i],1e-4,"qagiu(f455) smooth elist") ; for (i = 0; i < 10 ; i++) gsl_test_int((int)w->order[i],order[i]-1,"qagiu(f455) smooth order"); gsl_integration_workspace_free (w) ; } /* Test infinite range integral f15 using a relative error bound */ { int status = 0, i; struct counter_params p; double result = 0, abserr=0; gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000) ; /* All results are for GSL_IEEE_MODE=double-precision */ double exp_result = 6.553600000000024738E+04; double exp_abserr = 7.121667111456009280E-04; int exp_neval = 285; int exp_ier = 0; int exp_last = 10; double a[10] = { 0.000000000000000000E+00, 5.000000000000000000E-01, 2.500000000000000000E-01, 1.250000000000000000E-01, 6.250000000000000000E-02, 3.125000000000000000E-02, 1.562500000000000000E-02, 7.812500000000000000E-03, 3.906250000000000000E-03, 1.953125000000000000E-03 } ; double b[10] = { 1.953125000000000000E-03, 1.000000000000000000E+00, 5.000000000000000000E-01, 2.500000000000000000E-01, 1.250000000000000000E-01, 6.250000000000000000E-02, 3.125000000000000000E-02, 1.562500000000000000E-02, 7.812500000000000000E-03, 3.906250000000000000E-03 } ; double r[10] = { 1.099297665754340292E+00, 3.256176475185617591E-01, 8.064694554185326325E+00, 8.873128656118993263E+01, 6.977679035845269482E+02, 4.096981198511257389E+03, 1.574317583220441520E+04, 2.899418134793237914E+04, 1.498314766425578091E+04, 9.225251570832365360E+02 } ; double e[10] = { 7.101865971621337814E-04, 1.912660677170175771E-08, 9.167763417119923333E-08, 3.769501719163865578E-07, 6.973493131275552509E-07, 1.205653952340679711E-07, 1.380003928453846583E-07, 1.934652413547325474E-07, 3.408933028357320364E-07, 2.132473175465897029E-09 } ; int order[10] = { 1, 5, 4, 9, 8, 7, 6, 3, 2, 10 } ; double alpha = 5.0; gsl_function f = make_function(&f15, &alpha); gsl_function fc = make_counter(&f, &p) ; status = gsl_integration_qagiu (&fc, 0.0, 0.0, 1.0e-7, w->limit, w, &result, &abserr) ; gsl_test_rel(result,exp_result,1e-14,"qagiu(f15) smooth result") ; gsl_test_rel(abserr,exp_abserr,1e-5,"qagiu(f15) smooth abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qagiu(f15) smooth neval") ; gsl_test_int((int)(w->size),exp_last,"qagiu(f15) smooth last") ; gsl_test_int(status,exp_ier,"qagiu(f15) smooth status") ; for (i = 0; i < 10 ; i++) gsl_test_rel(w->alist[i],a[i],1e-15,"qagiu(f15) smooth alist") ; for (i = 0; i < 10 ; i++) gsl_test_rel(w->blist[i],b[i],1e-15,"qagiu(f15) smooth blist") ; for (i = 0; i < 10 ; i++) gsl_test_rel(w->rlist[i],r[i],1e-15,"qagiu(f15) smooth rlist") ; for (i = 0; i < 10 ; i++) gsl_test_rel(w->elist[i],e[i],1e-4,"qagiu(f15) smooth elist") ; for (i = 0; i < 10 ; i++) gsl_test_int((int)w->order[i],order[i]-1,"qagiu(f15) smooth order"); gsl_integration_workspace_free (w) ; } /* Test infinite range integral f16 using an absolute error bound */ { int status = 0, i; struct counter_params p; double result = 0, abserr=0; gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000) ; /* All results are for GSL_IEEE_MODE=double-precision */ double exp_result = 1.000000000006713292E-04; double exp_abserr = 3.084062020905636316E-09; int exp_neval = 165; int exp_ier = 0; int exp_last = 6; double a[6] = { 0.000000000000000000E+00, 5.000000000000000000E-01, 2.500000000000000000E-01, 1.250000000000000000E-01, 6.250000000000000000E-02, 3.125000000000000000E-02 } ; double b[6] = { 3.125000000000000000E-02, 1.000000000000000000E+00, 5.000000000000000000E-01, 2.500000000000000000E-01, 1.250000000000000000E-01, 6.250000000000000000E-02 } ; double r[6] = { 7.633587786326674618E-05, 9.900990099009899620E-07, 1.922522349322310737E-06, 3.629434715543053753E-06, 6.501422186103209199E-06, 1.062064387653501389E-05 } ; double e[6] = { 3.084061858351569051E-09, 3.112064814755089674E-17, 4.543453652226561245E-17, 4.908618166361344548E-17, 3.014338672269481784E-17, 6.795996738013555461E-18 } ; int order[6] = { 1, 4, 3, 2, 5, 6 } ; double alpha = 1.0; gsl_function f = make_function(&f16, &alpha); gsl_function fc = make_counter(&f, &p) ; status = gsl_integration_qagiu (&fc, 99.9, 1.0e-7, 0.0, w->limit, w, &result, &abserr) ; gsl_test_rel(result,exp_result,1e-14,"qagiu(f16) smooth result") ; gsl_test_rel(abserr,exp_abserr,1e-5,"qagiu(f16) smooth abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qagiu(f16) smooth neval") ; gsl_test_int((int)(w->size),exp_last,"qagiu(f16) smooth last") ; gsl_test_int(status,exp_ier,"qagiu(f16) smooth status") ; for (i = 0; i < 6 ; i++) gsl_test_rel(w->alist[i],a[i],1e-15,"qagiu(f16) smooth alist") ; for (i = 0; i < 6 ; i++) gsl_test_rel(w->blist[i],b[i],1e-15,"qagiu(f16) smooth blist") ; for (i = 0; i < 6 ; i++) gsl_test_rel(w->rlist[i],r[i],1e-15,"qagiu(f16) smooth rlist") ; for (i = 0; i < 6 ; i++) gsl_test_rel(w->elist[i],e[i],1e-4,"qagiu(f16) smooth elist") ; for (i = 0; i < 6 ; i++) gsl_test_int((int)w->order[i],order[i]-1,"qagiu(f16) smooth order"); gsl_integration_workspace_free (w) ; } /* Test infinite range integral myfn1 using an absolute error bound */ { int status = 0, i; struct counter_params p; double result = 0, abserr=0; gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000) ; /* All results are for GSL_IEEE_MODE=double-precision */ double exp_result = 2.275875794468747770E+00; double exp_abserr = 7.436490118267390744E-09; int exp_neval = 270; int exp_ier = 0; int exp_last = 5; double a[5] = { 1.250000000000000000E-01, 5.000000000000000000E-01, 2.500000000000000000E-01, 0.000000000000000000E+00, 3.750000000000000000E-01 } ; double b[5] = { 2.500000000000000000E-01, 1.000000000000000000E+00, 3.750000000000000000E-01, 1.250000000000000000E-01, 5.000000000000000000E-01 } ; double r[5] = { 4.639317228058405717E-04, 1.691664195356748834E+00, 1.146307471900291086E-01, 4.379392477350953574E-20, 4.691169201991640669E-01 } ; double e[5] = { 3.169263960393051137E-09, 4.265988974874425043E-09, 1.231954072964969637E-12, 8.360902986775307673E-20, 5.208244060463541433E-15 } ; int order[5] = { 2, 1, 3, 5, 4 } ; gsl_function f = make_function(&myfn1, 0); gsl_function fc = make_counter(&f, &p) ; status = gsl_integration_qagi (&fc, 1.0e-7, 0.0, w->limit, w, &result, &abserr) ; gsl_test_rel(result,exp_result,1e-14,"qagiu(myfn1) smooth result") ; gsl_test_rel(abserr,exp_abserr,1e-5,"qagiu(myfn1) smooth abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qagiu(myfn1) smooth neval") ; gsl_test_int((int)(w->size),exp_last,"qagiu(myfn1) smooth last") ; gsl_test_int(status,exp_ier,"qagiu(myfn1) smooth status") ; for (i = 0; i < 5 ; i++) gsl_test_rel(w->alist[i],a[i],1e-15,"qagiu(myfn1) smooth alist") ; for (i = 0; i < 5 ; i++) gsl_test_rel(w->blist[i],b[i],1e-15,"qagiu(myfn1) smooth blist") ; for (i = 0; i < 5 ; i++) gsl_test_rel(w->rlist[i],r[i],1e-14,"qagiu(myfn1) smooth rlist") ; for (i = 0; i < 5 ; i++) gsl_test_rel(w->elist[i],e[i],1e-4,"qagiu(myfn1) smooth elist") ; for (i = 0; i < 5 ; i++) gsl_test_int((int)w->order[i],order[i]-1,"qagiu(myfn1) smooth order"); gsl_integration_workspace_free (w) ; } /* Test infinite range integral myfn1 using an absolute error bound */ { int status = 0, i; struct counter_params p; double result = 0, abserr=0; gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000) ; /* All results are for GSL_IEEE_MODE=double-precision */ double exp_result = 2.718281828459044647E+00; double exp_abserr = 1.588185109253204805E-10; int exp_neval = 135; int exp_ier = 0; int exp_last = 5; double a[5] = { 0.000000000000000000E+00, 5.000000000000000000E-01, 2.500000000000000000E-01, 1.250000000000000000E-01, 6.250000000000000000E-02 } ; double b[5] = { 6.250000000000000000E-02, 1.000000000000000000E+00, 5.000000000000000000E-01, 2.500000000000000000E-01, 1.250000000000000000E-01 } ; double r[5] = { 8.315287189746029816E-07, 1.718281828459045091E+00, 8.646647167633871867E-01, 1.328565310599463256E-01, 2.477920647947255521E-03 } ; double e[5] = { 1.533437090413525935E-10, 4.117868247943567505E-12, 7.802455785301941044E-13, 5.395586026138397182E-13, 3.713312434866150125E-14 } ; int order[5] = { 1, 2, 3, 4, 5 } ; double alpha = 1.0 ; gsl_function f = make_function(&myfn2, &alpha); gsl_function fc = make_counter(&f, &p) ; status = gsl_integration_qagil (&fc, 1.0, 1.0e-7, 0.0, w->limit, w, &result, &abserr) ; gsl_test_rel(result,exp_result,1e-14,"qagiu(myfn2) smooth result") ; gsl_test_rel(abserr,exp_abserr,1e-5,"qagiu(myfn2) smooth abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qagiu(myfn2) smooth neval") ; gsl_test_int((int)(w->size),exp_last,"qagiu(myfn2) smooth last") ; gsl_test_int(status,exp_ier,"qagiu(myfn2) smooth status") ; for (i = 0; i < 5 ; i++) gsl_test_rel(w->alist[i],a[i],1e-15,"qagiu(myfn2) smooth alist") ; for (i = 0; i < 5 ; i++) gsl_test_rel(w->blist[i],b[i],1e-15,"qagiu(myfn2) smooth blist") ; for (i = 0; i < 5 ; i++) gsl_test_rel(w->rlist[i],r[i],1e-14,"qagiu(myfn2) smooth rlist") ; for (i = 0; i < 5 ; i++) gsl_test_rel(w->elist[i],e[i],1e-4,"qagiu(myfn2) smooth elist") ; for (i = 0; i < 5 ; i++) gsl_test_int((int)w->order[i],order[i]-1,"qagiu(myfn2) smooth order"); gsl_integration_workspace_free (w) ; } /* Test integral f454 with integrable singular points */ { int status = 0, i; struct counter_params p; double result = 0, abserr=0; gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000) ; /* All results are for GSL_IEEE_MODE=double-precision */ double exp_result = 5.274080611672716401E+01; double exp_abserr = 1.755703848687062418E-04; int exp_neval = 777; int exp_ier = 0; int exp_last = 20; double a[20] = { 9.687500000000000000E-01, 1.401269388548935790E+00, 1.414213562373095145E+00, 1.000000000000000000E+00, 0.000000000000000000E+00, 2.207106781186547462E+00, 1.810660171779821415E+00, 1.207106781186547462E+00, 5.000000000000000000E-01, 1.103553390593273731E+00, 1.612436867076458391E+00, 1.310660171779821415E+00, 7.500000000000000000E-01, 1.051776695296636976E+00, 1.513325214724776657E+00, 1.362436867076458391E+00, 8.750000000000000000E-01, 1.463769388548935790E+00, 1.388325214724776657E+00, 9.375000000000000000E-01} ; double b[20] = { 1.000000000000000000E+00, 1.414213562373095145E+00, 1.463769388548935790E+00, 1.051776695296636976E+00, 5.000000000000000000E-01, 3.000000000000000000E+00, 2.207106781186547462E+00, 1.310660171779821415E+00, 7.500000000000000000E-01, 1.207106781186547462E+00, 1.810660171779821415E+00, 1.362436867076458391E+00, 8.750000000000000000E-01, 1.103553390593273731E+00, 1.612436867076458391E+00, 1.388325214724776657E+00, 9.375000000000000000E-01, 1.513325214724776657E+00, 1.401269388548935790E+00, 9.687500000000000000E-01} ; double r[20] = { -1.125078814079027711E-01, -1.565132123531515207E-01, -4.225328513207429193E-01, -1.830392049835374568E-01, 6.575875041899758092E-03, 4.873920540843067783E+01, 6.032891565603589079E+00, -2.991531901645863023E-01, -7.326282608704996063E-03, -2.431894410706912923E-01, 5.911661670635662835E-01, -2.236786562536174916E-01, -5.647871991778510847E-02, -1.305470403178642658E-01, -1.721363984401322045E-01, -1.589345454585119055E-01, -7.406626263352669715E-02, -2.208730668000830344E-01, -1.048692749517999567E-01, -6.302287584527696551E-02} ; double e[20] = { 2.506431410088378817E-02, 2.730454695485963826E-02, 1.017446081816190118E-01, 3.252808038935910834E-02, 7.300687878575027348E-17, 5.411138804637469780E-13, 6.697855121200013106E-14, 3.321267596107916554E-15, 1.417509685426979386E-16, 2.699945168224041491E-15, 6.573952690524728748E-15, 2.483331942899818875E-15, 6.270397525408045936E-16, 1.449363299575615261E-15, 1.911097929242846383E-15, 1.764527917763735212E-15, 8.223007012367522077E-16, 2.452183642810224359E-15, 1.164282836272345215E-15, 6.996944784151910810E-16} ; int order[20] = { 3, 4, 2, 1, 6, 7, 11, 8, 10, 12, 18, 15, 16, 14, 19, 17, 20, 13, 9, 5 } ; gsl_function f = make_function(&f454, 0); gsl_function fc = make_counter(&f, &p) ; double pts[4] ; pts[0] = 0.0; pts[1] = 1.0; pts[2] = sqrt(2.0); pts[3] = 3.0; status = gsl_integration_qagp (&fc, pts, 4, 0.0, 1.0e-3, w->limit, w, &result, &abserr) ; gsl_test_rel(result,exp_result,1e-14,"qagp(f454) singular result") ; gsl_test_rel(abserr,exp_abserr,1e-5,"qagp(f454) singular abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qagp(f454) singular neval") ; gsl_test_int((int)(w->size),exp_last,"qagp(f454) singular last") ; gsl_test_int(status,exp_ier,"qagp(f454) singular status") ; for (i = 0; i < 20 ; i++) gsl_test_rel(w->alist[i],a[i],1e-15,"qagp(f454) singular alist") ; for (i = 0; i < 20 ; i++) gsl_test_rel(w->blist[i],b[i],1e-15,"qagp(f454) singular blist") ; for (i = 0; i < 20 ; i++) gsl_test_rel(w->rlist[i],r[i],1e-14,"qagp(f454) singular rlist") ; for (i = 0; i < 20 ; i++) gsl_test_rel(w->elist[i],e[i],1e-4,"qagp(f454) singular elist") ; for (i = 0; i < 20 ; i++) gsl_test_int((int)w->order[i],order[i]-1,"qagp(f454) singular order"); gsl_integration_workspace_free (w) ; } /* Test cauchy integration using a relative error bound */ { int status = 0, i; struct counter_params p; double result = 0, abserr=0; gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000) ; /* All results are for GSL_IEEE_MODE=double-precision */ double exp_result = -8.994400695837000137E-02; double exp_abserr = 1.185290176227023727E-06; int exp_neval = 215; int exp_ier = 0; int exp_last = 6; double a[6] = { -1.000000000000000000E+00, 2.500000000000000000E+00, 1.250000000000000000E+00, 6.250000000000000000E-01, -5.000000000000000000E-01, -7.500000000000000000E-01} ; double b[6] = { -7.500000000000000000E-01, 5.000000000000000000E+00, 2.500000000000000000E+00, 1.250000000000000000E+00, 6.250000000000000000E-01, -5.000000000000000000E-01} ; double r[6] = { -1.234231128040012976E-01, 3.579970394639702888E-03, 2.249831615049339983E-02, 7.214232992127905808E-02, 2.079093855884046535E-02, -8.553244917962132821E-02} ; double e[6] = { 1.172832717970022565E-06, 9.018232896137375412E-13, 1.815172652101790755E-12, 1.006998195150956048E-13, 1.245463873006391609E-08, 1.833082948207153514E-15 } ; int order[6] = { 1, 5, 3, 2, 4, 6 } ; double alpha = 1.0 ; gsl_function f = make_function(&f459, &alpha); gsl_function fc = make_counter(&f, &p) ; status = gsl_integration_qawc (&fc, -1.0, 5.0, 0.0, 0.0, 1.0e-3, w->limit, w, &result, &abserr) ; gsl_test_rel(result,exp_result,1e-14,"qawc(f459) result") ; gsl_test_rel(abserr,exp_abserr,1e-6,"qawc(f459) abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qawc(f459) neval") ; gsl_test_int((int)(w->size),exp_last,"qawc(f459) last") ; gsl_test_int(status,exp_ier,"qawc(f459) status") ; for (i = 0; i < 6 ; i++) gsl_test_rel(w->alist[i],a[i],1e-15,"qawc(f459) alist") ; for (i = 0; i < 6 ; i++) gsl_test_rel(w->blist[i],b[i],1e-15,"qawc(f459) blist") ; for (i = 0; i < 6 ; i++) gsl_test_rel(w->rlist[i],r[i],1e-14,"qawc(f459) rlist") ; for (i = 0; i < 6 ; i++) gsl_test_rel(w->elist[i],e[i],1e-4,"qawc(f459) elist") ; for (i = 0; i < 6 ; i++) gsl_test_int((int)w->order[i],order[i]-1,"qawc(f459) order"); p.neval = 0; status = gsl_integration_qawc (&fc, 5.0, -1.0, 0.0, 0.0, 1.0e-3, w->limit, w, &result, &abserr) ; gsl_test_rel(result,-exp_result,1e-14,"qawc(f459) rev result") ; gsl_test_rel(abserr,exp_abserr,1e-6,"qawc(f459) rev abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qawc(f459) rev neval") ; gsl_test_int((int)(w->size),exp_last,"qawc(f459) rev last") ; gsl_test_int(status,exp_ier,"qawc(f459) rev status") ; gsl_integration_workspace_free (w) ; } /* Test QAWS singular integration using a relative error bound */ { int status = 0, i; struct counter_params p; double result = 0, abserr=0; gsl_integration_qaws_table * t = gsl_integration_qaws_table_alloc (0.0, 0.0, 1, 0); gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000) ; /* All results are for GSL_IEEE_MODE=double-precision */ double exp_result = -1.892751853489401670E-01; double exp_abserr = 1.129133712015747658E-08; int exp_neval = 280; int exp_ier = 0; int exp_last = 8; double a[8] = { 0.000000000000000000E+00, 5.000000000000000000E-01, 2.500000000000000000E-01, 1.250000000000000000E-01, 6.250000000000000000E-02, 3.125000000000000000E-02, 1.562500000000000000E-02, 7.812500000000000000E-03} ; double b[8] = { 7.812500000000000000E-03, 1.000000000000000000E+00, 5.000000000000000000E-01, 2.500000000000000000E-01, 1.250000000000000000E-01, 6.250000000000000000E-02, 3.125000000000000000E-02, 1.562500000000000000E-02} ; double r[8] = { -4.126317299834445824E-05, -1.076283950172247789E-01, -6.240573216173390947E-02, -1.456169844189576269E-02, -3.408925115926728436E-03, -8.914083918175634211E-04, -2.574191402137795482E-04, -8.034390712936630608E-05} ; double e[8] = { 1.129099387465713953E-08, 3.423394967694403596E-13, 6.928428071454762659E-16, 1.616673288784094320E-16, 3.784667152924835070E-17, 9.896621209399419425E-18, 2.857926564445496100E-18, 8.919965558336773736E-19} ; int order[8] = { 1, 2, 3, 4, 5, 6, 7, 8 } ; double alpha = 1.0 ; gsl_function f = make_function(&f458, &alpha); gsl_function fc = make_counter(&f, &p) ; status = gsl_integration_qaws (&fc, 0.0, 1.0, t, 0.0, 1.0e-7, w->limit, w, &result, &abserr) ; gsl_test_rel(result,exp_result,1e-14,"qaws(f458) ln(x-a) result") ; gsl_test_rel(abserr,exp_abserr,1e-6,"qaws(f458) ln(x-a) abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qaws(f458) ln(x-a) neval") ; gsl_test_int((int)(w->size),exp_last,"qaws(f458) ln(x-a) last") ; gsl_test_int(status,exp_ier,"qaws(f458) ln(x-a) status") ; for (i = 0; i < 6 ; i++) gsl_test_rel(w->alist[i],a[i],1e-15,"qaws(f458) ln(x-a) alist") ; for (i = 0; i < 6 ; i++) gsl_test_rel(w->blist[i],b[i],1e-15,"qaws(f458) ln(x-a) blist") ; for (i = 0; i < 6 ; i++) gsl_test_rel(w->rlist[i],r[i],1e-14,"qaws(f458) ln(x-a) rlist") ; for (i = 0; i < 6 ; i++) gsl_test_rel(w->elist[i],e[i],1e-4,"qaws(f458) ln(x-a) elist") ; for (i = 0; i < 6 ; i++) gsl_test_int((int)w->order[i],order[i]-1,"qaws(f458) ln(x-a) order"); /* Test without logs */ gsl_integration_qaws_table_set (t, -0.5, -0.3, 0, 0); status = gsl_integration_qaws (&fc, 0.0, 1.0, t, 0.0, 1.0e-7, w->limit, w, &result, &abserr) ; exp_result = 9.896686656601706433E-01; exp_abserr = 5.888032513201251628E-08; gsl_test_rel(result,exp_result,1e-14,"qaws(f458) AB result") ; gsl_test_rel(abserr,exp_abserr,1e-6,"qaws(f458) AB abserr") ; /* Test with ln(x - a) */ gsl_integration_qaws_table_set (t, -0.5, -0.3, 1, 0); status = gsl_integration_qaws (&fc, 0.0, 1.0, t, 0.0, 1.0e-7, w->limit, w, &result, &abserr) ; exp_result = -3.636679470586539620E-01; exp_abserr = 2.851348775257054093E-08; gsl_test_rel(result,exp_result,1e-14,"qaws(f458) AB ln(x-a) result") ; gsl_test_rel(abserr,exp_abserr,1e-6,"qaws(f458) AB ln(x-a) abserr") ; /* Test with ln(b - x) */ gsl_integration_qaws_table_set (t, -0.5, -0.3, 0, 1); status = gsl_integration_qaws (&fc, 0.0, 1.0, t, 0.0, 1.0e-7, w->limit, w, &result, &abserr) ; exp_result = -1.911489253363409802E+00; exp_abserr = 9.854016753016499034E-09; gsl_test_rel(result,exp_result,1e-14,"qaws(f458) AB ln(b-x) result") ; gsl_test_rel(abserr,exp_abserr,1e-6,"qaws(f458) AB ln(b-x) abserr") ; /* Test with ln(x - a) ln(b - x) */ gsl_integration_qaws_table_set (t, -0.5, -0.3, 1, 1); status = gsl_integration_qaws (&fc, 0.0, 1.0, t, 0.0, 1.0e-7, w->limit, w, &result, &abserr) ; exp_result = 3.159922862811048172E-01; exp_abserr = 2.336183482198144595E-08; gsl_test_rel(result,exp_result,1e-14,"qaws(f458) AB ln(x-a)ln(b-x) result") ; gsl_test_rel(abserr,exp_abserr,1e-6,"qaws(f458) AB ln(x-a)ln(b-x) abserr") ; gsl_integration_workspace_free (w) ; gsl_integration_qaws_table_free (t) ; } /* Test oscillatory integration using a relative error bound */ { int status = 0, i; struct counter_params p; double result = 0, abserr=0; gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000) ; gsl_integration_qawo_table * wo = gsl_integration_qawo_table_alloc (10.0 * M_PI, 1.0, GSL_INTEG_SINE, 1000) ; /* All results are for GSL_IEEE_MODE=double-precision */ double exp_result = -1.281368483991674190E-01; double exp_abserr = 6.875028324415666248E-12; int exp_neval = 305; int exp_ier = 0; int exp_last = 9; double a[9] = { 0.000000000000000000E+00, 5.000000000000000000E-01, 2.500000000000000000E-01, 1.250000000000000000E-01, 6.250000000000000000E-02, 3.125000000000000000E-02, 1.562500000000000000E-02, 7.812500000000000000E-03, 3.906250000000000000E-03 } ; double b[9] = { 3.906250000000000000E-03, 1.000000000000000000E+00, 5.000000000000000000E-01, 2.500000000000000000E-01, 1.250000000000000000E-01, 6.250000000000000000E-02, 3.125000000000000000E-02, 1.562500000000000000E-02, 7.812500000000000000E-03 } ; double r[9] = { -1.447193692377651136E-03, 2.190541162282139478E-02, -2.587726479625663753E-02, 5.483209176363500886E-02, -3.081695575172510582E-02, -9.178321994387816929E-02, -3.886716016498160953E-02, -1.242306301902117854E-02, -3.659495117871544145E-03} ; double e[9] = { 8.326506625798146465E-07, 1.302638552580516100E-13, 7.259224351945759794E-15, 1.249770395036711102E-14, 7.832180081562836579E-16, 1.018998440559284116E-15, 4.315121611695628020E-16, 1.379237060008662177E-16, 4.062855738364339357E-17 } ; int order[9] = { 1, 2, 4, 3, 6, 5, 7, 8, 9 } ; double alpha = 1.0 ; gsl_function f = make_function(&f456, &alpha); gsl_function fc = make_counter(&f, &p) ; status = gsl_integration_qawo (&fc, 0.0, 0.0, 1e-7, w->limit, w, wo, &result, &abserr) ; gsl_test_rel(result,exp_result,1e-14,"qawo(f456) result") ; gsl_test_rel(abserr,exp_abserr,1e-3,"qawo(f456) abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qawo(f456) neval") ; gsl_test_int((int)(w->size),exp_last,"qawo(f456) last") ; gsl_test_int(status,exp_ier,"qawo(f456) status") ; for (i = 0; i < 9 ; i++) gsl_test_rel(w->alist[i],a[i],1e-15,"qawo(f456) alist") ; for (i = 0; i < 9 ; i++) gsl_test_rel(w->blist[i],b[i],1e-15,"qawo(f456) blist") ; for (i = 0; i < 9 ; i++) gsl_test_rel(w->rlist[i],r[i],1e-14,"qawo(f456) rlist") ; for (i = 0; i < 9 ; i++) gsl_test_rel(w->elist[i],e[i],1e-2,"qawo(f456) elist") ; for (i = 0; i < 9 ; i++) gsl_test_int((int)w->order[i],order[i]-1,"qawo(f456) order"); /* In reverse, flip limit and sign of length */ gsl_integration_qawo_table_set_length (wo, -1.0); p.neval = 0; status = gsl_integration_qawo (&fc, 1.0, 0.0, 1e-7, w->limit, w, wo, &result, &abserr) ; gsl_test_rel(result,-exp_result,1e-14,"qawo(f456) rev result") ; gsl_test_rel(abserr,exp_abserr,1e-3,"qawo(f456) rev abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qawo(f456) rev neval") ; gsl_test_int((int)(w->size),exp_last,"qawo(f456) rev last") ; gsl_test_int(status,exp_ier,"qawo(f456) rev status") ; gsl_integration_qawo_table_free (wo) ; gsl_integration_workspace_free (w) ; } /* Test fourier integration using an absolute error bound */ { int status = 0, i; struct counter_params p; double result = 0, abserr=0; gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000) ; gsl_integration_workspace * wc = gsl_integration_workspace_alloc (1000) ; gsl_integration_qawo_table * wo = gsl_integration_qawo_table_alloc (M_PI / 2.0, 1.0, GSL_INTEG_COSINE, 1000) ; /* All results are for GSL_IEEE_MODE=double-precision */ double exp_result = 9.999999999279802765E-01; double exp_abserr = 1.556289974669056164E-08; int exp_neval = 590; int exp_ier = 0; int exp_last = 12; double r[12] = { 1.013283128125232802E+00, -1.810857954748607349E-02, 7.466754034900931897E-03, -4.360312526786496237E-03, 2.950184068216192904E-03, -2.168238443073697373E-03, 1.680910783140869081E-03, -1.352797860944863345E-03, 1.119354921991485901E-03, -9.462367583691360827E-04, 8.136341270731781887E-04, -7.093931338504278145E-04 } ; double e[12] = { 1.224798040766472695E-12, 1.396565155187268456E-13, 1.053844511655910310E-16, 6.505213034913026604E-19, 7.155734338404329264E-18, 1.105886215935214523E-17, 9.757819552369539906E-18, 5.854691731421723944E-18, 4.553649124439220312E-18, 7.643625316022806260E-18, 2.439454888092388058E-17, 2.130457268934021451E-17 } ; double alpha = 1.0 ; gsl_function f = make_function(&f457, &alpha); gsl_function fc = make_counter(&f, &p) ; status = gsl_integration_qawf (&fc, 0.0, 1e-7, w->limit, w, wc, wo, &result, &abserr) ; gsl_test_rel(result,exp_result,1e-14,"qawf(f457) result") ; gsl_test_rel(abserr,exp_abserr,1e-3,"qawf(f457) abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qawf(f457) neval") ; gsl_test_int((int)(w->size),exp_last,"qawf(f457) last") ; gsl_test_int(status,exp_ier,"qawf(f457) status") ; for (i = 0; i < 9 ; i++) gsl_test_rel(w->rlist[i],r[i],1e-12,"qawf(f457) rlist") ; /* We can only get within two orders of magnitude on the error here, which is very sensitive to the floating point precision */ for (i = 0; i < 9 ; i++) gsl_test_rel(w->elist[i],e[i],50.0,"qawf(f457) elist") ; gsl_integration_qawo_table_free (wo) ; gsl_integration_workspace_free (wc) ; gsl_integration_workspace_free (w) ; } /* test Romberg integration */ { int status = 0; double result; size_t neval; double exp_result; int exp_ier = 0; gsl_function f; gsl_integration_romberg_workspace * w = gsl_integration_romberg_alloc (20); f = make_function(&f_sin, NULL); exp_result = 1.0; status = gsl_integration_romberg(&f, 0.0, M_PI_2, 0.0, 1e-10, &result, &neval, w); gsl_test_int(status, exp_ier, "romberg(f_sin) status") ; gsl_test_rel(result, exp_result, 1e-15, "romberg(f_sin) result") ; status = gsl_integration_romberg(&f, M_PI_2, 0.0, 0.0, 1e-10, &result, &neval, w); gsl_test_int(status, exp_ier, "romberg(f_sin) reverse status") ; gsl_test_rel(result, -exp_result, 1e-15, "romberg(f_sin) reverse result") ; f = make_function(&cqf11, NULL); exp_result = 5.0; status = gsl_integration_romberg(&f, -5.0, 5.0, 0.0, 1e-10, &result, &neval, w); gsl_test_int(status, exp_ier, "romberg(cqf11) status") ; gsl_test_rel(result, exp_result, 1e-15, "romberg(cqf11) result") ; status = gsl_integration_romberg(&f, 5.0, -5.0, 0.0, 1e-10, &result, &neval, w); gsl_test_int(status, exp_ier, "romberg(cqf11) reverse status") ; gsl_test_rel(result, -exp_result, 1e-15, "romberg(cqf11) reverse result") ; gsl_integration_romberg_free(w); } /* Sanity check monomial test function for fixed Gauss-Legendre rules */ { struct monomial_params params; gsl_function f; f.function = &f_monomial; f.params = ¶ms; params.degree = 2; params.constant = 1.0; gsl_test_abs(GSL_FN_EVAL(&f, 2.0), 4.0, 8*GSL_DBL_EPSILON, "f_monomial sanity check 1"); params.degree = 1; params.constant = 2.0; gsl_test_abs(GSL_FN_EVAL(&f, 2.0), 4.0, 8*GSL_DBL_EPSILON, "f_monomial sanity check 2"); params.degree = 2; params.constant = 2.0; gsl_test_abs(integ_f_monomial(1.0, 2.0, ¶ms), (2.0/3.0)*(2.0*2.0*2.0 - 1.0*1.0*1.0), 8*GSL_DBL_EPSILON, "integ_f_monomial sanity check"); } /* Test the fixed-order Gauss-Legendre rules with a monomial. */ { int n; struct monomial_params params; gsl_function f; const double a = 0.0, b = 1.2; f.function = &f_monomial; f.params = ¶ms; params.constant = 1.0; for (n = 1; n < 1025; ++n) { double expected, result; gsl_integration_glfixed_table * tbl = gsl_integration_glfixed_table_alloc(n); params.degree = 2*n-1; /* n point rule exact for 2n-1 degree poly */ expected = integ_f_monomial(a, b, ¶ms); result = gsl_integration_glfixed(&f, a, b, tbl); if (tbl->precomputed) { gsl_test_rel(result, expected, 1.0e-12, "glfixed %d-point: Integrating (%g*x^%d) over [%g,%g]", n, params.constant, params.degree, a, b); } else { gsl_test_rel(result, expected, 1.0e-7, "glfixed %d-point: Integrating (%g*x^%d) over [%g,%g]", n, params.constant, params.degree, a, b); } gsl_integration_glfixed_table_free(tbl); } } /* Sanity check sin(x) test function for fixed Gauss-Legendre rules */ { gsl_function f = { f_sin, NULL }; gsl_test_abs(GSL_FN_EVAL(&f, 2.0), sin(2.0), 0.0, "f_sin sanity check 1"); gsl_test_abs(GSL_FN_EVAL(&f, 7.0), sin(7.0), 0.0, "f_sin sanity check 2"); gsl_test_abs(integ_f_sin(0.0, M_PI), 2.0, GSL_DBL_EPSILON, "integ_f_sin sanity check"); } /* Test the fixed-order Gauss-Legendre rules against sin(x) on [0, pi] */ { const int n_max = 1024; const gsl_function f = { f_sin, NULL }; const double a = 0.0, b = M_PI; const double expected = integ_f_sin(a, b); double result, abserr, prev_abserr = 0.0; int n; for (n = 1; n <= n_max; ++n) { gsl_integration_glfixed_table * const tbl = gsl_integration_glfixed_table_alloc(n); result = gsl_integration_glfixed(&f, a, b, tbl); abserr = fabs(expected - result); if (n == 1) { gsl_test_abs(result, GSL_FN_EVAL(&f,(b+a)/2)*(b-a), 0.0, "glfixed %d-point: behavior for n == 1", n); } else if (n < 9) { gsl_test(! (abserr < prev_abserr), "glfixed %d-point: observed drop in absolute error versus %d-points", n, n-1); } else if (tbl->precomputed) { gsl_test_abs(result, expected, 2.0 * n * GSL_DBL_EPSILON, "glfixed %d-point: very low absolute error for high precision coefficients", n); } else { gsl_test_abs(result, expected, 1.0e6 * GSL_DBL_EPSILON, "glfixed %d-point: acceptable absolute error for on-the-fly coefficients", n); } prev_abserr = abserr; gsl_integration_glfixed_table_free(tbl); } } /* Test some fixed-order Gauss-Legendre rule points and weights on [-1, 1] */ /* This verifies the (point, weight) retrieval API behaves sanely */ { const double eps = GSL_DBL_EPSILON; gsl_integration_glfixed_table *tbl; int n, i; double xi, wi; /* Analytical results for points and weights on [-1, 1] Pulled from http://en.wikipedia.org/wiki/Gaussian_quadrature Sorted in increasing order of Gauss points */ const double e1[1][2] = { {0, 2 } }; const double e2[2][2] = { {-1.0/M_SQRT3, 1}, { 1.0/M_SQRT3, 1} }; const double e3[3][2] = { {-SQRT15/5, 5./9}, { 0, 8./9}, { SQRT15/5, 5./9} }; const double e4[4][2] = { {-CONST1, (18-SQRT30)/36}, {-CONST2, (18+SQRT30)/36}, { CONST2, (18+SQRT30)/36}, { CONST1, (18-SQRT30)/36} }; const double e5[5][2] = { {-CONST3, (322-13*SQRT70)/900}, {-CONST4, (322+13*SQRT70)/900}, { 0, 128./225 }, { CONST4, (322+13*SQRT70)/900}, { CONST3, (322-13*SQRT70)/900} }; n = 1; tbl = gsl_integration_glfixed_table_alloc(n); for (i = 0; i < n; ++i) { gsl_integration_glfixed_point(-1, 1, i, &xi, &wi, tbl); gsl_test_abs(xi, e1[i][0], eps, "glfixed %d-point lookup: x(%d)", n, i); gsl_test_abs(wi, e1[i][1], eps, "glfixed %d-point lookup: w(%d)", n, i); } gsl_integration_glfixed_table_free(tbl); n = 2; tbl = gsl_integration_glfixed_table_alloc(n); for (i = 0; i < n; ++i) { gsl_integration_glfixed_point(-1, 1, i, &xi, &wi, tbl); gsl_test_abs(xi, e2[i][0], eps, "glfixed %d-point lookup: x(%d)", n, i); gsl_test_abs(wi, e2[i][1], eps, "glfixed %d-point lookup: w(%d)", n, i); } gsl_integration_glfixed_table_free(tbl); n = 3; tbl = gsl_integration_glfixed_table_alloc(n); for (i = 0; i < n; ++i) { gsl_integration_glfixed_point(-1, 1, i, &xi, &wi, tbl); gsl_test_abs(xi, e3[i][0], eps, "glfixed %d-point lookup: x(%d)", n, i); gsl_test_abs(wi, e3[i][1], eps, "glfixed %d-point lookup: w(%d)", n, i); } gsl_integration_glfixed_table_free(tbl); n = 4; tbl = gsl_integration_glfixed_table_alloc(n); for (i = 0; i < n; ++i) { gsl_integration_glfixed_point(-1, 1, i, &xi, &wi, tbl); gsl_test_abs(xi, e4[i][0], eps, "glfixed %d-point lookup: x(%d)", n, i); gsl_test_abs(wi, e4[i][1], eps, "glfixed %d-point lookup: w(%d)", n, i); } gsl_integration_glfixed_table_free(tbl); n = 5; tbl = gsl_integration_glfixed_table_alloc(n); for (i = 0; i < n; ++i) { gsl_integration_glfixed_point(-1, 1, i, &xi, &wi, tbl); gsl_test_abs(xi, e5[i][0], eps, "glfixed %d-point lookup: x(%d)", n, i); gsl_test_abs(wi, e5[i][1], eps, "glfixed %d-point lookup: w(%d)", n, i); } gsl_integration_glfixed_table_free(tbl); } /* Test some fixed-order Gauss-Legendre rule points and weights on [-2, 3] */ /* This verifies the (point, weight) retrieval API is okay on non-[-1,1] */ { gsl_integration_glfixed_table *tbl; double result, x, w; int i; /* Odd n = 3, f(x) = x**5 + x**4 + x**3 + x**2 + x**1 + 1 */ result = 0; tbl = gsl_integration_glfixed_table_alloc(3); for (i = 0; i < 3; ++i) { gsl_integration_glfixed_point(-2, 3, i, &x, &w, tbl); result += w * (1 + x*(1 + x*(1 + x*(1 + x*(1 + x))))); } gsl_test_rel(result, 805./4, 1e-8, "glfixed %d-point xi,wi eval", 3); gsl_integration_glfixed_table_free(tbl); /* Even n = 4, f(x) = x**7 + x**6 + x**5 + x**4 + x**3 + x**2 + x**1 + 1 */ result = 0; tbl = gsl_integration_glfixed_table_alloc(4); for (i = 0; i < 4; ++i) { gsl_integration_glfixed_point(-2, 3, i, &x, &w, tbl); result += w * (1 + x*(1 + x*(1 + x*(1 + x*(1 + x*(1 + x*(1 + x))))))); } gsl_test_rel(result, 73925./56, 1e-8, "glfixed %d-point xi,wi eval", 4); gsl_integration_glfixed_table_free(tbl); } { typedef double (*fptr) ( double , void * ); const fptr funs[25] = { &cqf1 , &cqf2 , &cqf3 , &cqf4 , &cqf5 , &cqf6 , &cqf7 , &cqf8 , &cqf9 , &cqf10 , &cqf11 , &cqf12 , &cqf13 , &cqf14 , &cqf15 , &cqf16 , &cqf17 , &cqf18 , &cqf19 , &cqf20 , &cqf21 , &cqf22 , &cqf23 , &cqf24 , &cqf25 }; const double ranges[50] = { 0, 1 , 0, 1 , 0, 1 , -1, 1 , -1, 1 , 0, 1 , 0, 1 , 0, 1 , 0, 1 , 0, 1 , 0, 1 , 0, 1 , 0, 1 , 0, 10 , 0, 10 , 0, 10 , 0, 1 , 0, M_PI , 0, 1 , -1, 1 , 0, 1 , 0, 1 , 0, 1 , 0, 3 , 0, 5 }; const double f_exact[25] = { 1.7182818284590452354 , 0.7 , 2.0/3 , 0.4794282266888016674 , 1.5822329637296729331 , 0.4 , 2 , 0.86697298733991103757 , 1.1547005383792515290 , 0.69314718055994530942 , 0.3798854930417224753 , 0.77750463411224827640 , 0.49898680869304550249 , 0.5 , 1 , 0.13263071079267703209e+08 , 0.49898680869304550249 , 0.83867634269442961454 , -1 , 1.5643964440690497731 , 0.16349494301863722618 , -0.63466518254339257343 , 0.013492485649467772692 , 17.664383539246514971 , 7.5 }; double result, abserr; size_t neval; int fid; /* Loop over the functions... */ for ( fid = 0 ; fid < 25 ; fid++ ) { gsl_integration_cquad_workspace *ws = gsl_integration_cquad_workspace_alloc ( 200 ); gsl_function f = make_function(funs[fid], NULL); double exact = f_exact[fid]; /* Call our quadrature routine. */ int status = gsl_integration_cquad (&f, ranges[2*fid] , ranges[2*fid+1] , 0.0 , 1.0e-12 , ws , &result , &abserr , &neval); gsl_test_rel (result, exact, 1e-12, "cquad f%d", fid); gsl_test (fabs(result - exact) > 5.0 * abserr, "cquad f%d error (%g actual vs %g estimated)", fid, fabs(result-exact), abserr); gsl_test_int (status, GSL_SUCCESS, "cquad return code"); gsl_integration_cquad_workspace_free(ws); } } /* test fixed quadrature */ { size_t n; struct monomial_params params; gsl_function f; double exact; double a, b; int deg = 5; /* monomial degree */ double dterm = (deg % 2) == 0 ? 1.0 : -1.0; f.function = &f_monomial; f.params = ¶ms; params.degree = deg; params.constant = 1.0; n = 15; for (b = 1.1; b <= 4.0; b += 0.1) { /* test with a < b */ a = b - 1.0; /* Legendre quadrature */ exact = (pow(b,params.degree+1.0) - pow(a,params.degree+1.0))/(params.degree+1.0); test_fixed_quadrature(gsl_integration_fixed_legendre, n, a, b, 0.0, 0.0, 1.0e-12, exact, &f, "legendre monomial"); /* Chebyshev type 1 quadrature */ exact = GSL_SIGN(b-a)*M_PI*pow(0.5*(a+b),params.degree)*gsl_sf_hyperg_2F1(0.5*(1-params.degree),-0.5*params.degree,1.0,(b-a)*(b-a)/((b+a)*(b+a))); test_fixed_quadrature(gsl_integration_fixed_chebyshev, n, a, b, 0.0, 0.0, 1.0e-12, exact, &f, "chebyshev monomial"); /* Laguerre quadrature */ exact = pow(b, -1.0 - deg) * exp(a * b) * gsl_sf_gamma_inc(1.0 + deg, a * b); test_fixed_quadrature(gsl_integration_fixed_laguerre, n, a, b, 0.0, 0.0, 1.0e-12, exact, &f, "laguerre monomial"); /* Hermite quadrature */ exact = 0.5 * pow(b, -0.5*deg) * (-(-1.0 + dterm) * a * deg * gsl_sf_gamma(0.5*deg) * gsl_sf_hyperg_1F1(0.5 - 0.5*deg, 1.5, -a*a*b) + (1.0 + dterm) * gsl_sf_gamma(0.5*(1.0+deg)) * gsl_sf_hyperg_1F1(-0.5*deg, 0.5, -a*a*b) / sqrt(b)); test_fixed_quadrature(gsl_integration_fixed_hermite, n, a, b, 0.0, 0.0, 1.0e-12, exact, &f, "hermite monomial"); /* Chebyshev type 2 quadrature */ exact = GSL_SIGN(b-a)*M_PI_2*pow(0.5*(a+b),params.degree)*gsl_sf_hyperg_2F1(0.5*(1-params.degree),-0.5*params.degree,2.0,(b-a)*(b-a)/((b+a)*(b+a)))*0.25*(b-a)*(b-a); test_fixed_quadrature(gsl_integration_fixed_chebyshev2, n, a, b, 0.0, 0.0, 1.0e-12, exact, &f, "chebyshev2 monomial"); /* now test with a > b */ a = b + 1.0; /* Legendre quadrature */ exact = (pow(b,params.degree+1.0) - pow(a,params.degree+1.0))/(params.degree+1.0); test_fixed_quadrature(gsl_integration_fixed_legendre, n, a, b, 0.0, 0.0, 1.0e-12, exact, &f, "legendre monomial"); /* Laguerre quadrature */ exact = pow(b, -1.0 - deg) * exp(a * b) * gsl_sf_gamma_inc(1.0 + deg, a * b); test_fixed_quadrature(gsl_integration_fixed_laguerre, n, a, b, 0.0, 0.0, 1.0e-12, exact, &f, "laguerre monomial"); /* Hermite quadrature */ exact = 0.5 * pow(b, -0.5*deg) * (-(-1.0 + dterm) * a * deg * gsl_sf_gamma(0.5*deg) * gsl_sf_hyperg_1F1(0.5 - 0.5*deg, 1.5, -a*a*b) + (1.0 + dterm) * gsl_sf_gamma(0.5*(1.0+deg)) * gsl_sf_hyperg_1F1(-0.5*deg, 0.5, -a*a*b) / sqrt(b)); test_fixed_quadrature(gsl_integration_fixed_hermite, n, a, b, 0.0, 0.0, 1.0e-12, exact, &f, "hermite monomial"); #if 0 /* FIXME: Chebyshev doesn't work when a > b */ /* Chebyshev type 1 quadrature */ exact = -M_PI / 8.0 * (3.0*a*a + 2.0*a*b + 3.0*b*b); test_fixed_quadrature(gsl_integration_fixed_chebyshev, n, a, b, 0.0, 0.0, 1.0e-12, exact, &f, "chebyshev monomial"); /* Chebyshev type 2 quadrature */ exact = -M_PI / 128.0 * (a - b) * (a - b) *(5.0*a*a + 6.0*a*b + 5.0*b*b); test_fixed_quadrature(gsl_integration_fixed_chebyshev2, n, a, b, 0.0, 0.0, 1.0e-12, exact, &f, "chebyshev2 monomial"); #endif } /* now test on myfn1 */ f = make_function(&myfn1, 0); n = 200; test_fixed_quadrature(gsl_integration_fixed_legendre, n, 1.2, 1.6, 0.0, 0.0, 1.0e-12, 0.01505500344456001, &f, "legendre myfn1"); test_fixed_quadrature(gsl_integration_fixed_chebyshev, n, 1.2, 2.6, 0.0, 0.0, 1.0e-12, 0.0582346516219999, &f, "chebyshev myfn1"); test_fixed_quadrature(gsl_integration_fixed_gegenbauer, n, 1.2, 1.6, 2.0, 0.0, 1.0e-12, 1.2279468957162412661311711271e-5, &f, "gegenbauer myfn1"); test_fixed_quadrature(gsl_integration_fixed_gegenbauer, n, 1.2, 1.6, -0.5, 0.0, 1.0e-12, 1.228256086101808986e-1, &f, "gegenbauer myfn1"); test_fixed_quadrature(gsl_integration_fixed_jacobi, n, 1.2, 1.6, 2.0, 1.5, 1.0e-12, 3.173064776410033e-5, &f, "jacobi myfn1"); test_fixed_quadrature(gsl_integration_fixed_jacobi, n, 1.2, 1.6, -0.5, -0.5, 1.0e-12, 1.228256086101808986e-1, &f, "jacobi myfn1"); test_fixed_quadrature(gsl_integration_fixed_laguerre, n, 1.2, 0.6, 0.5, 0.0, 1.0e-12, 0.006604180366378123, &f, "laguerre myfn1"); test_fixed_quadrature(gsl_integration_fixed_hermite, n, 1.2, 0.6, 1.0, 0.0, 1.0e-12, 0.6542819629825344, &f, "hermite myfn1"); test_fixed_quadrature(gsl_integration_fixed_exponential, n, 1.2, 1.6, 2.0, 0.0, 1.0e-12, 2.1315535492168832898083633e-4, &f, "exponential myfn1"); test_fixed_quadrature(gsl_integration_fixed_rational, 15, 1.2, 1.6, 2.0, -33.4, 1.0e-9, 4.8457468060064844e-20, &f, "rational myfn1"); test_fixed_quadrature(gsl_integration_fixed_chebyshev2, n, 1.2, 2.6, 0.0, 0.0, 1.0e-12, 0.0081704088896491, &f, "chebyshev2 myfn1"); } /* test Gegenbauer quadrature */ { size_t n, k; struct monomial_params params; gsl_function f; const double exactarray[5] = {4.15933612154155020161400717857e-7, 744697.808572324010134504819452, 55.2024994284578980512106835228, 7.95574829722734114107142857143, 0.00179653588816666666666666666667}; const double aarray[5] = {0.123,7.747,1.47,-1.47,0.0}; const double barray[5] = {0.456,12.0,2.0,2.0,0.47}; const double alphaarray[5] = {2.0,0.5,-0.5,1.0,0.0}; f.function = &f_monomial; f.params = ¶ms; params.degree = 5; params.constant = 1.0; n = 50; for ( k = 0; k < 5; k++) { test_fixed_quadrature(gsl_integration_fixed_gegenbauer, n, aarray[k], barray[k], alphaarray[k], 0.0, 1.0e-12, exactarray[k], &f, "gegenbauer monomial"); } } /* test Jacobi quadrature */ { size_t n, k; struct monomial_params params; gsl_function f; const double exactarray[5] = {9.052430592016123480501898e-7,3.131716150347619771233591755e6,0.04435866422797298224404592896,5.287059602300844442782407,2.5337038518475893688512749675e-6}; const double aarray[5] = {0.123,7.747,1.47,-1.47,0.0}; const double barray[5] = {0.456,12.0,2.0,2.0,0.47}; double alpha, beta; f.function = &f_monomial; f.params = ¶ms; params.degree = 5; params.constant = 1.0; alpha = 2.0; beta = 1.5; n = 50; for ( k = 0; k < 5; k++) { test_fixed_quadrature(gsl_integration_fixed_jacobi, n, aarray[k], barray[k], alpha, beta, 1.0e-12, exactarray[k], &f, "jacobi monomial"); } } /* test Exponential quadrature */ { size_t n, k; struct monomial_params params; gsl_function f; const double exactarray[5] = {1.598864206823942764921875e-4, 624615.81848571833291063083819, 0.222578063871903188095238095238, 28.8968950008739567709168294271, 4.62725113500425479890950520833e-7}; const double aarray[5] = {0.123,7.747,1.47,-1.47,0.0}; const double barray[5] = {0.456,12.0,2.0,2.0,0.47}; const double alphaarray[5] = {1.0,1.5,2.0,3.0,5.0}; f.function = &f_monomial; f.params = ¶ms; params.degree = 5; params.constant = 1.0; n = 50; for ( k = 0; k < 5; k++) { test_fixed_quadrature(gsl_integration_fixed_exponential, n, aarray[k], barray[k], alphaarray[k], 0.0, 1.0e-12, exactarray[k], &f, "exponential monomial"); } } /* test Rational quadrature */ { size_t n, k; struct monomial_params params; gsl_function f; const double exactarray[6] = {1.312245361412108703130374957e-10,0.0170362044485924082779613124672, 8.93065131938394658578136414201e-11, 7.17990217357447544326794457270e-13, -11.0760676986664098133970869634, 0.00290392485414197833688178206557}; const double aarray[6] = {0.0,0.123,7.747,1.47,-1.47,0.0}; const double barray[6] = {2.0,0.456,12.0,2.0,2.0,0.47}; const double alphaarray[6] = {0.0,1.0,1.5,2.0,3.0,5.0}; const double betaarray[6] = {-21.0,-12.0,-13.0,-22.0,-21.0,-16.0}; f.function = &f_monomial; f.params = ¶ms; params.degree = 5; params.constant = 1.0; n = 5; for ( k = 0; k < 5; k++) { test_fixed_quadrature(gsl_integration_fixed_rational, n, aarray[k], barray[k], alphaarray[k], betaarray[k], 1.0e-12, exactarray[k], &f, "rational monomial"); } } exit (gsl_test_summary()); } void my_error_handler (const char *reason, const char *file, int line, int err) { if (0) printf ("(caught [%s:%d: %s (%d)])\n", file, line, reason, err) ; }