/* linalg/bidiag.c * * Copyright (C) 2001, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Factorise a matrix A into * * A = U B V^T * * where U and V are orthogonal and B is upper bidiagonal. * * On exit, B is stored in the diagonal and first superdiagonal of A. * * U is stored as a packed set of Householder transformations in the * lower triangular part of the input matrix below the diagonal. * * V is stored as a packed set of Householder transformations in the * upper triangular part of the input matrix above the first * superdiagonal. * * The full matrix for U can be obtained as the product * * U = U_1 U_2 .. U_N * * where * * U_i = (I - tau_i * u_i * u_i') * * and where u_i is a Householder vector * * u_i = [0, .. , 0, 1, A(i+1,i), A(i+3,i), .. , A(M,i)] * * The full matrix for V can be obtained as the product * * V = V_1 V_2 .. V_(N-2) * * where * * V_i = (I - tau_i * v_i * v_i') * * and where v_i is a Householder vector * * v_i = [0, .. , 0, 1, A(i,i+2), A(i,i+3), .. , A(i,N)] * * See Golub & Van Loan, "Matrix Computations" (3rd ed), Algorithm 5.4.2 * * Note: this description uses 1-based indices. The code below uses * 0-based indices */ #include #include #include #include #include #include #include int gsl_linalg_bidiag_decomp (gsl_matrix * A, gsl_vector * tau_U, gsl_vector * tau_V) { if (A->size1 < A->size2) { GSL_ERROR ("bidiagonal decomposition requires M>=N", GSL_EBADLEN); } else if (tau_U->size != A->size2) { GSL_ERROR ("size of tau_U must be N", GSL_EBADLEN); } else if (tau_V->size + 1 != A->size2) { GSL_ERROR ("size of tau_V must be (N - 1)", GSL_EBADLEN); } else { const size_t M = A->size1; const size_t N = A->size2; gsl_vector * tmp = gsl_vector_alloc(M); size_t j; for (j = 0 ; j < N; j++) { /* apply Householder transformation to current column */ gsl_vector_view v = gsl_matrix_subcolumn(A, j, j, M - j); double tau_j = gsl_linalg_householder_transform (&v.vector); /* apply the transformation to the remaining columns */ if (j + 1 < N) { gsl_matrix_view m = gsl_matrix_submatrix (A, j, j + 1, M - j, N - j - 1); gsl_vector_view work = gsl_vector_subvector(tau_U, j, N - j - 1); double * ptr = gsl_vector_ptr(&v.vector, 0); double tmp = *ptr; *ptr = 1.0; gsl_linalg_householder_left (tau_j, &v.vector, &m.matrix, &work.vector); *ptr = tmp; } gsl_vector_set (tau_U, j, tau_j); /* apply Householder transformation to current row */ if (j + 1 < N) { v = gsl_matrix_subrow (A, j, j + 1, N - j - 1); tau_j = gsl_linalg_householder_transform (&v.vector); /* apply the transformation to the remaining rows */ if (j + 1 < M) { gsl_matrix_view m = gsl_matrix_submatrix (A, j + 1, j + 1, M - j - 1, N - j - 1); gsl_vector_view work = gsl_vector_subvector(tmp, 0, M - j - 1); gsl_linalg_householder_right (tau_j, &v.vector, &m.matrix, &work.vector); } gsl_vector_set (tau_V, j, tau_j); } } gsl_vector_free(tmp); return GSL_SUCCESS; } } /* Form the orthogonal matrices U, V, diagonal d and superdiagonal sd from the packed bidiagonal matrix A */ int gsl_linalg_bidiag_unpack (const gsl_matrix * A, const gsl_vector * tau_U, gsl_matrix * U, const gsl_vector * tau_V, gsl_matrix * V, gsl_vector * diag, gsl_vector * superdiag) { const size_t M = A->size1; const size_t N = A->size2; const size_t K = GSL_MIN(M, N); if (M < N) { GSL_ERROR ("matrix A must have M >= N", GSL_EBADLEN); } else if (tau_U->size != K) { GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN); } else if (tau_V->size + 1 != K) { GSL_ERROR ("size of tau must be MIN(M,N) - 1", GSL_EBADLEN); } else if (U->size1 != M || U->size2 != N) { GSL_ERROR ("size of U must be M x N", GSL_EBADLEN); } else if (V->size1 != N || V->size2 != N) { GSL_ERROR ("size of V must be N x N", GSL_EBADLEN); } else if (diag->size != K) { GSL_ERROR ("size of diagonal must match size of A", GSL_EBADLEN); } else if (superdiag->size + 1 != K) { GSL_ERROR ("size of subdiagonal must be (diagonal size - 1)", GSL_EBADLEN); } else { size_t i, j; /* Copy diagonal into diag */ for (i = 0; i < N; i++) { double Aii = gsl_matrix_get (A, i, i); gsl_vector_set (diag, i, Aii); } /* Copy superdiagonal into superdiag */ for (i = 0; i < N - 1; i++) { double Aij = gsl_matrix_get (A, i, i+1); gsl_vector_set (superdiag, i, Aij); } /* Initialize V to the identity */ gsl_matrix_set_identity (V); for (i = N - 1; i-- > 0;) { /* Householder row transformation to accumulate V */ gsl_vector_const_view h = gsl_matrix_const_subrow (A, i, i + 1, N - i - 1); double ti = gsl_vector_get (tau_V, i); gsl_matrix_view m = gsl_matrix_submatrix (V, i + 1, i + 1, N- i - 1, N - i - 1); gsl_vector_view work = gsl_matrix_subrow(U, 0, 0, N - i - 1); double * ptr = gsl_vector_ptr((gsl_vector *) &h.vector, 0); double tmp = *ptr; *ptr = 1.0; gsl_linalg_householder_left (ti, &h.vector, &m.matrix, &work.vector); *ptr = tmp; } /* Initialize U to the identity */ gsl_matrix_set_identity (U); for (j = N; j-- > 0;) { /* Householder column transformation to accumulate U */ gsl_vector_const_view h = gsl_matrix_const_subcolumn (A, j, j, M - j); double tj = gsl_vector_get (tau_U, j); gsl_matrix_view m = gsl_matrix_submatrix (U, j, j, M - j, N - j); gsl_linalg_householder_hm (tj, &h.vector, &m.matrix); } return GSL_SUCCESS; } } int gsl_linalg_bidiag_unpack2 (gsl_matrix * A, gsl_vector * tau_U, gsl_vector * tau_V, gsl_matrix * V) { const size_t M = A->size1; const size_t N = A->size2; const size_t K = GSL_MIN(M, N); if (M < N) { GSL_ERROR ("matrix A must have M >= N", GSL_EBADLEN); } else if (tau_U->size != K) { GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN); } else if (tau_V->size + 1 != K) { GSL_ERROR ("size of tau must be MIN(M,N) - 1", GSL_EBADLEN); } else if (V->size1 != N || V->size2 != N) { GSL_ERROR ("size of V must be N x N", GSL_EBADLEN); } else { size_t i, j; /* Initialize V to the identity */ gsl_matrix_set_identity (V); for (i = N - 1; i-- > 0;) { /* Householder row transformation to accumulate V */ gsl_vector_const_view r = gsl_matrix_const_row (A, i); gsl_vector_const_view h = gsl_vector_const_subvector (&r.vector, i + 1, N - (i+1)); double ti = gsl_vector_get (tau_V, i); gsl_matrix_view m = gsl_matrix_submatrix (V, i + 1, i + 1, N-(i+1), N-(i+1)); gsl_linalg_householder_hm (ti, &h.vector, &m.matrix); } /* Copy superdiagonal into tau_v */ for (i = 0; i < N - 1; i++) { double Aij = gsl_matrix_get (A, i, i+1); gsl_vector_set (tau_V, i, Aij); } /* Allow U to be unpacked into the same memory as A, copy diagonal into tau_U */ for (j = N; j-- > 0;) { /* Householder column transformation to accumulate U */ double tj = gsl_vector_get (tau_U, j); double Ajj = gsl_matrix_get (A, j, j); gsl_matrix_view m = gsl_matrix_submatrix (A, j, j, M-j, N-j); gsl_vector_set (tau_U, j, Ajj); gsl_linalg_householder_hm1 (tj, &m.matrix); } return GSL_SUCCESS; } } int gsl_linalg_bidiag_unpack_B (const gsl_matrix * A, gsl_vector * diag, gsl_vector * superdiag) { const size_t M = A->size1; const size_t N = A->size2; const size_t K = GSL_MIN(M, N); if (diag->size != K) { GSL_ERROR ("size of diagonal must match size of A", GSL_EBADLEN); } else if (superdiag->size + 1 != K) { GSL_ERROR ("size of subdiagonal must be (matrix size - 1)", GSL_EBADLEN); } else { size_t i; /* Copy diagonal into diag */ for (i = 0; i < K; i++) { double Aii = gsl_matrix_get (A, i, i); gsl_vector_set (diag, i, Aii); } /* Copy superdiagonal into superdiag */ for (i = 0; i < K - 1; i++) { double Aij = gsl_matrix_get (A, i, i+1); gsl_vector_set (superdiag, i, Aij); } return GSL_SUCCESS; } }