/* linalg/cod.c * * Copyright (C) 2016, 2017 Patrick Alken * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include /* * This module contains routines for factoring an M-by-N matrix A as: * * A P = Q R Z^T * * known as the Complete Orthogonal Decomposition, where: * * P is a N-by-N permutation matrix * Q is M-by-M orthogonal * R has an r-by-r upper triangular block * Z is N-by-N orthogonal * * When A is full rank, Z = I and this becomes the QR decomposition * with column pivoting. When A is rank deficient, then * * R = [ R11 0 ] where R11 is r-by-r and r = rank(A) * [ 0 0 ] */ static int cod_RZ(gsl_matrix * A, gsl_vector * tau); static double cod_householder_transform(double *alpha, gsl_vector * v); static int cod_householder_mh(const double tau, const gsl_vector * v, gsl_matrix * A, gsl_vector * work); static int cod_householder_hv(const double tau, const gsl_vector * v, gsl_vector * w); static int cod_householder_Zvec(const gsl_matrix * QRZT, const gsl_vector * tau_Z, const size_t rank, gsl_vector * v); static int cod_trireg_solve(const gsl_matrix * R, const double lambda, const gsl_vector * b, gsl_matrix * S, gsl_vector * x, gsl_vector * work); int gsl_linalg_COD_decomp_e(gsl_matrix * A, gsl_vector * tau_Q, gsl_vector * tau_Z, gsl_permutation * p, double tol, size_t * rank, gsl_vector * work) { const size_t M = A->size1; const size_t N = A->size2; if (tau_Q->size != GSL_MIN (M, N)) { GSL_ERROR ("size of tau_Q must be MIN(M,N)", GSL_EBADLEN); } else if (tau_Z->size != GSL_MIN (M, N)) { GSL_ERROR ("size of tau_Z must be MIN(M,N)", GSL_EBADLEN); } else if (p->size != N) { GSL_ERROR ("permutation size must be N", GSL_EBADLEN); } else if (work->size != N) { GSL_ERROR ("work size must be N", GSL_EBADLEN); } else { int status, signum; size_t r; /* decompose: A P = Q R */ status = gsl_linalg_QRPT_decomp(A, tau_Q, p, &signum, work); if (status) return status; /* estimate rank of A */ r = gsl_linalg_QRPT_rank(A, tol); if (r < N) { /* * matrix is rank-deficient, so that the R factor is * * R = [ R11 R12 ] =~ [ R11 R12 ] * [ 0 R22 ] [ 0 0 ] * * compute RZ decomposition of upper trapezoidal matrix * [ R11 R12 ] = [ R11~ 0 ] Z */ gsl_matrix_view R_upper = gsl_matrix_submatrix(A, 0, 0, r, N); gsl_vector_view t = gsl_vector_subvector(tau_Z, 0, r); cod_RZ(&R_upper.matrix, &t.vector); } *rank = r; return GSL_SUCCESS; } } int gsl_linalg_COD_decomp(gsl_matrix * A, gsl_vector * tau_Q, gsl_vector * tau_Z, gsl_permutation * p, size_t * rank, gsl_vector * work) { return gsl_linalg_COD_decomp_e(A, tau_Q, tau_Z, p, -1.0, rank, work); } /* gsl_linalg_COD_lssolve() Find the least squares solution to the overdetermined system min ||b - A x||^2 for M >= N using the COD factorization A P = Q R Z Inputs: QRZT - matrix A, in COD compressed format, M-by-N tau_Q - Householder scalars for Q, length min(M,N) tau_Z - Householder scalars for Z, length min(M,N) perm - permutation matrix rank - rank of A b - rhs vector, length M x - (output) solution vector, length N residual - (output) residual vector, b - A x, length M */ int gsl_linalg_COD_lssolve (const gsl_matrix * QRZT, const gsl_vector * tau_Q, const gsl_vector * tau_Z, const gsl_permutation * perm, const size_t rank, const gsl_vector * b, gsl_vector * x, gsl_vector * residual) { const size_t M = QRZT->size1; const size_t N = QRZT->size2; if (M < N) { GSL_ERROR ("QRZT matrix must have M>=N", GSL_EBADLEN); } else if (M != b->size) { GSL_ERROR ("matrix size must match b size", GSL_EBADLEN); } else if (rank > GSL_MIN (M, N)) { GSL_ERROR ("rank must be <= MIN(M,N)", GSL_EBADLEN); } else if (N != x->size) { GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN); } else if (M != residual->size) { GSL_ERROR ("matrix size must match residual size", GSL_EBADLEN); } else { gsl_matrix_const_view R11 = gsl_matrix_const_submatrix (QRZT, 0, 0, rank, rank); gsl_vector_view QTb1 = gsl_vector_subvector(residual, 0, rank); gsl_vector_view x1 = gsl_vector_subvector(x, 0, rank); gsl_vector_set_zero(x); /* compute residual = Q^T b = [ c1 ; c2 ] */ gsl_vector_memcpy(residual, b); gsl_linalg_QR_QTvec (QRZT, tau_Q, residual); /* solve x1 := R11^{-1} (Q^T b)(1:r) */ gsl_vector_memcpy(&(x1.vector), &(QTb1.vector)); gsl_blas_dtrsv(CblasUpper, CblasNoTrans, CblasNonUnit, &(R11.matrix), &(x1.vector)); /* compute Z ( R11^{-1} x1; 0 ) */ cod_householder_Zvec(QRZT, tau_Z, rank, x); /* compute x = P Z^T ( R11^{-1} x1; 0 ) */ gsl_permute_vector_inverse(perm, x); /* compute residual = b - A x = Q (Q^T b - R [ R11^{-1} x1; 0 ]) = Q [ 0 ; c2 ] */ gsl_vector_set_zero(&(QTb1.vector)); gsl_linalg_QR_Qvec(QRZT, tau_Q, residual); return GSL_SUCCESS; } } /* gsl_linalg_COD_lssolve2() Find the least squares solution to the Tikhonov regularized system in standard form: min ||b - A x||^2 + lambda^2 ||x||^2 for M >= N using the COD factorization A P = Q R Z Inputs: lambda - parameter QRZT - matrix A, in COD compressed format, M-by-N tau_Q - Householder scalars for Q, length min(M,N) tau_Z - Householder scalars for Z, length min(M,N) perm - permutation matrix rank - rank of A b - rhs vector, length M x - (output) solution vector, length N residual - (output) residual vector, b - A x, length M S - workspace, rank-by-rank work - workspace, length rank */ int gsl_linalg_COD_lssolve2 (const double lambda, const gsl_matrix * QRZT, const gsl_vector * tau_Q, const gsl_vector * tau_Z, const gsl_permutation * perm, const size_t rank, const gsl_vector * b, gsl_vector * x, gsl_vector * residual, gsl_matrix * S, gsl_vector * work) { const size_t M = QRZT->size1; const size_t N = QRZT->size2; if (M < N) { GSL_ERROR ("QRZT matrix must have M>=N", GSL_EBADLEN); } else if (M != b->size) { GSL_ERROR ("matrix size must match b size", GSL_EBADLEN); } else if (rank > GSL_MIN (M, N)) { GSL_ERROR ("rank must be <= MIN(M,N)", GSL_EBADLEN); } else if (N != x->size) { GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN); } else if (M != residual->size) { GSL_ERROR ("matrix size must match residual size", GSL_EBADLEN); } else if (S->size1 != rank || S->size2 != rank) { GSL_ERROR ("S must be rank-by-rank", GSL_EBADLEN); } else if (work->size != rank) { GSL_ERROR ("work must be length rank", GSL_EBADLEN); } else { gsl_matrix_const_view R11 = gsl_matrix_const_submatrix (QRZT, 0, 0, rank, rank); gsl_vector_view c1 = gsl_vector_subvector(residual, 0, rank); gsl_vector_view y1 = gsl_vector_subvector(x, 0, rank); gsl_vector_set_zero(x); /* compute residual = Q^T b = [ c1 ; c2 ]*/ gsl_vector_memcpy(residual, b); gsl_linalg_QR_QTvec (QRZT, tau_Q, residual); /* solve [ R11 ; lambda*I ] y1 = [ (Q^T b)(1:r) ; 0 ] */ cod_trireg_solve(&(R11.matrix), lambda, &(c1.vector), S, &(y1.vector), work); /* save y1 for later residual calculation */ gsl_vector_memcpy(work, &(y1.vector)); /* compute Z [ y1; 0 ] */ cod_householder_Zvec(QRZT, tau_Z, rank, x); /* compute x = P Z^T ( y1; 0 ) */ gsl_permute_vector_inverse(perm, x); /* compute residual = b - A x = Q (Q^T b - [ R11 y1; 0 ]) = Q [ c1 - R11*y1 ; c2 ] */ /* work = R11*y1 */ gsl_blas_dtrmv(CblasUpper, CblasNoTrans, CblasNonUnit, &(R11.matrix), work); gsl_vector_sub(&(c1.vector), work); gsl_linalg_QR_Qvec(QRZT, tau_Q, residual); return GSL_SUCCESS; } } /* gsl_linalg_COD_unpack() Unpack encoded COD decomposition into the matrices Q,R,Z,P Inputs: QRZT - encoded COD decomposition tau_Q - Householder scalars for Q tau_Z - Householder scalars for Z rank - rank of matrix (as determined from gsl_linalg_COD_decomp) Q - (output) M-by-M matrix Q R - (output) M-by-N matrix R Z - (output) N-by-N matrix Z */ int gsl_linalg_COD_unpack(const gsl_matrix * QRZT, const gsl_vector * tau_Q, const gsl_vector * tau_Z, const size_t rank, gsl_matrix * Q, gsl_matrix * R, gsl_matrix * Z) { const size_t M = QRZT->size1; const size_t N = QRZT->size2; if (tau_Q->size != GSL_MIN (M, N)) { GSL_ERROR ("size of tau_Q must be MIN(M,N)", GSL_EBADLEN); } else if (tau_Z->size != GSL_MIN (M, N)) { GSL_ERROR ("size of tau_Z must be MIN(M,N)", GSL_EBADLEN); } else if (rank > GSL_MIN (M, N)) { GSL_ERROR ("rank must be <= MIN(M,N)", GSL_EBADLEN); } else if (Q->size1 != M || Q->size2 != M) { GSL_ERROR ("Q must by M-by-M", GSL_EBADLEN); } else if (R->size1 != M || R->size2 != N) { GSL_ERROR ("R must by M-by-N", GSL_EBADLEN); } else if (Z->size1 != N || Z->size2 != N) { GSL_ERROR ("Z must by N-by-N", GSL_EBADLEN); } else { size_t i; gsl_matrix_view R11 = gsl_matrix_submatrix(R, 0, 0, rank, rank); gsl_matrix_const_view QRZT11 = gsl_matrix_const_submatrix(QRZT, 0, 0, rank, rank); /* form Q matrix */ gsl_matrix_set_identity(Q); for (i = GSL_MIN (M, N); i-- > 0;) { gsl_vector_const_view h = gsl_matrix_const_subcolumn (QRZT, i, i, M - i); gsl_matrix_view m = gsl_matrix_submatrix (Q, i, i, M - i, M - i); gsl_vector_view work = gsl_matrix_subcolumn (R, 0, 0, M - i); double ti = gsl_vector_get (tau_Q, i); double * ptr = gsl_vector_ptr((gsl_vector *) &h.vector, 0); double tmp = *ptr; *ptr = 1.0; gsl_linalg_householder_left (ti, &h.vector, &m.matrix, &work.vector); *ptr = tmp; } /* form Z matrix */ gsl_matrix_set_identity(Z); if (rank < N) { gsl_vector_view work = gsl_matrix_row(R, 0); /* temporary workspace, size N */ /* multiply I by Z from the right */ gsl_linalg_COD_matZ(QRZT, tau_Z, rank, Z, &work.vector); } /* copy rank-by-rank upper triangle of QRZT into R and zero the rest */ gsl_matrix_set_zero(R); gsl_matrix_tricpy(CblasUpper, CblasNonUnit, &R11.matrix, &QRZT11.matrix); return GSL_SUCCESS; } } /* gsl_linalg_COD_matZ Multiply an M-by-N matrix A on the right by Z (N-by-N) Inputs: QRZT - encoded COD matrix tau_Z - Householder scalars for Z rank - matrix rank A - on input, M-by-N matrix on output, A * Z work - workspace of length M */ int gsl_linalg_COD_matZ(const gsl_matrix * QRZT, const gsl_vector * tau_Z, const size_t rank, gsl_matrix * A, gsl_vector * work) { const size_t M = A->size1; const size_t N = A->size2; if (tau_Z->size != GSL_MIN (QRZT->size1, QRZT->size2)) { GSL_ERROR("tau_Z must be GSL_MIN(M,N)", GSL_EBADLEN); } else if (QRZT->size2 != N) { GSL_ERROR("QRZT must have N columns", GSL_EBADLEN); } else if (work->size != M) { GSL_ERROR("workspace must be length M", GSL_EBADLEN); } else { /* if rank == N, then Z = I and there is nothing to do */ if (rank < N) { size_t i; for (i = rank; i > 0 && i--; ) { gsl_vector_const_view h = gsl_matrix_const_subrow (QRZT, i, rank, N - rank); gsl_matrix_view m = gsl_matrix_submatrix (A, 0, i, M, N - i); double ti = gsl_vector_get (tau_Z, i); cod_householder_mh (ti, &h.vector, &m.matrix, work); } } return GSL_SUCCESS; } } /********************************************* * INTERNAL ROUTINES * *********************************************/ /* cod_RZ() Perform RZ decomposition of an upper trapezoidal matrix, A = [ A11 A12 ] = [ R 0 ] Z where A is M-by-N with N >= M, A11 is M-by-M upper triangular, and A12 is M-by-(N-M). On output, Z is stored as Householder reflectors in the A12 portion of A, Z = Z(1) Z(2) ... Z(M) Inputs: A - M-by-N matrix with N >= M On input, upper trapezoidal matrix [ A11 A12 ] On output, A11 is overwritten by R (subdiagonal elements are not touched), and A12 is overwritten by Z in packed storage tau - (output) Householder scalars, size M */ static int cod_RZ(gsl_matrix * A, gsl_vector * tau) { const size_t M = A->size1; const size_t N = A->size2; if (tau->size != M) { GSL_ERROR("tau has wrong size", GSL_EBADLEN); } else if (N < M) { GSL_ERROR("N must be >= M", GSL_EINVAL); } else if (M == N) { /* quick return */ gsl_vector_set_all(tau, 0.0); return GSL_SUCCESS; } else { size_t k; for (k = M; k > 0 && k--; ) { double *alpha = gsl_matrix_ptr(A, k, k); gsl_vector_view z = gsl_matrix_subrow(A, k, M, N - M); double tauk; /* compute Householder reflection to zero [ A(k,k) A(k,M+1:N) ] */ tauk = cod_householder_transform(alpha, &z.vector); gsl_vector_set(tau, k, tauk); if ((tauk != 0) && (k > 0)) { gsl_vector_view w = gsl_vector_subvector(tau, 0, k); gsl_matrix_view B = gsl_matrix_submatrix(A, 0, k, k, N - k); cod_householder_mh(tauk, &z.vector, &B.matrix, &w.vector); } } return GSL_SUCCESS; } } static double cod_householder_transform(double *alpha, gsl_vector * v) { double beta, tau; double xnorm = gsl_blas_dnrm2(v); if (xnorm == 0) { return 0.0; /* tau = 0 */ } beta = - (*alpha >= 0.0 ? +1.0 : -1.0) * gsl_hypot(*alpha, xnorm); tau = (beta - *alpha) / beta; { double s = (*alpha - beta); if (fabs(s) > GSL_DBL_MIN) { gsl_blas_dscal (1.0 / s, v); } else { gsl_blas_dscal (GSL_DBL_EPSILON / s, v); gsl_blas_dscal (1.0 / GSL_DBL_EPSILON, v); } *alpha = beta; } return tau; } /* cod_householder_hv Apply Householder reflection H = (I - tau*v*v') to vector v from the left, w' = H * w Inputs: tau - Householder scalar v - Householder vector, size M w - on input, w vector, size M on output, H * w Notes: 1) Based on LAPACK routine DLARZ */ static int cod_householder_hv(const double tau, const gsl_vector * v, gsl_vector * w) { if (tau == 0) { return GSL_SUCCESS; /* H = I */ } else { const size_t M = w->size; const size_t L = v->size; double w0 = gsl_vector_get(w, 0); gsl_vector_view w1 = gsl_vector_subvector(w, M - L, L); double d1, d; /* d1 := v . w(M-L:M) */ gsl_blas_ddot(v, &w1.vector, &d1); /* d := w(1) + v . w(M-L:M) */ d = w0 + d1; /* w(1) = w(1) - tau * d */ gsl_vector_set(w, 0, w0 - tau * d); /* w(M-L:M) = w(M-L:M) - tau * d * v */ gsl_blas_daxpy(-tau * d, v, &w1.vector); return GSL_SUCCESS; } } /* cod_householder_mh Apply Householder reflection H = (I - tau*v*v') to matrix A from the right Inputs: tau - Householder scalar v - Householder vector, size N-M A - matrix, size M-by-N work - workspace, size M Notes: 1) Based on LAPACK routine DLARZ */ static int cod_householder_mh(const double tau, const gsl_vector * v, gsl_matrix * A, gsl_vector * work) { if (tau == 0) { return GSL_SUCCESS; /* H = I */ } else { const size_t M = A->size1; const size_t N = A->size2; const size_t L = v->size; gsl_vector_view A1 = gsl_matrix_subcolumn(A, 0, 0, M); gsl_matrix_view C = gsl_matrix_submatrix(A, 0, N - L, M, L); /* work(1:M) = A(1:M,1) */ gsl_vector_memcpy(work, &A1.vector); /* work(1:M) = work(1:M) + A(1:M,M+1:N) * v(1:N-M) */ gsl_blas_dgemv(CblasNoTrans, 1.0, &C.matrix, v, 1.0, work); /* A(1:M,1) = A(1:M,1) - tau * work(1:M) */ gsl_blas_daxpy(-tau, work, &A1.vector); /* A(1:M,M+1:N) = A(1:M,M+1:N) - tau * work(1:M) * v(1:N-M)' */ gsl_blas_dger(-tau, work, v, &C.matrix); return GSL_SUCCESS; } } /* cod_householder_Zvec Multiply a vector by Z Inputs: QRZT - encoded COD matrix tau_Z - Householder scalars for Z rank - matrix rank v - on input, vector of length N on output, Z * v */ static int cod_householder_Zvec(const gsl_matrix * QRZT, const gsl_vector * tau_Z, const size_t rank, gsl_vector * v) { const size_t M = QRZT->size1; const size_t N = QRZT->size2; if (tau_Z->size != GSL_MIN (M, N)) { GSL_ERROR("tau_Z must be GSL_MIN(M,N)", GSL_EBADLEN); } else if (v->size != N) { GSL_ERROR("v must be length N", GSL_EBADLEN); } else { if (rank < N) { size_t i; for (i = 0; i < rank; ++i) { gsl_vector_const_view h = gsl_matrix_const_subrow (QRZT, i, rank, N - rank); gsl_vector_view w = gsl_vector_subvector (v, i, N - i); double ti = gsl_vector_get (tau_Z, i); cod_householder_hv(ti, &h.vector, &w.vector); } } return GSL_SUCCESS; } } /* cod_trireg_solve() This function computes the solution to the least squares system [ R ] x = [ b ] [ lambda*I ] [ 0 ] where R is an N-by-N upper triangular matrix, lambda is a scalar parameter, and b is a vector of length N. This is done by computing the QR factorization [ R ] = W S^T [ lambda*I ] where S^T is upper triangular, and solving S^T x = W^T [ b ] [ 0 ] Inputs: R - full rank upper triangular matrix; the diagonal elements are modified but restored on output lambda - scalar parameter lambda b - right hand side vector b S - workspace, N-by-N x - (output) least squares solution of the system work - workspace of length N */ static int cod_trireg_solve (const gsl_matrix * R, const double lambda, const gsl_vector * b, gsl_matrix * S, gsl_vector * x, gsl_vector * work) { const size_t N = R->size2; gsl_vector_const_view diag = gsl_matrix_const_diagonal(R); size_t i, j, k; if (lambda <= 0.0) { GSL_ERROR("lambda must be positive", GSL_EINVAL); } /* copy R and b to preserve input and initialise S; store diag(R) in work */ gsl_matrix_transpose_tricpy(CblasUpper, CblasUnit, S, R); gsl_vector_memcpy(work, &diag.vector); gsl_vector_memcpy(x, b); /* eliminate the diagonal matrix lambda*I using Givens rotations */ for (j = 0; j < N; j++) { double bj = 0.0; gsl_matrix_set (S, j, j, lambda); for (k = j + 1; k < N; k++) { gsl_matrix_set (S, k, k, 0.0); } /* the transformations to eliminate the row of lambda*I modify only a single element of b beyond the first n, which is initially zero */ for (k = j; k < N; k++) { /* determine a Givens rotation which eliminates the appropriate element in the current row of lambda*I */ double sine, cosine; double xk = gsl_vector_get (x, k); double rkk = gsl_vector_get (work, k); double skk = gsl_matrix_get (S, k, k); if (skk == 0) { continue; } if (fabs (rkk) < fabs (skk)) { double cotangent = rkk / skk; sine = 0.5 / sqrt (0.25 + 0.25 * cotangent * cotangent); cosine = sine * cotangent; } else { double tangent = skk / rkk; cosine = 0.5 / sqrt (0.25 + 0.25 * tangent * tangent); sine = cosine * tangent; } /* Compute the modified diagonal element of r and the modified element of [b,0] */ { double new_rkk = cosine * rkk + sine * skk; double new_xk = cosine * xk + sine * bj; bj = -sine * xk + cosine * bj; gsl_vector_set(work, k, new_rkk); gsl_matrix_set(S, k, k, new_rkk); gsl_vector_set(x, k, new_xk); } /* Accumulate the transformation in the row of s */ for (i = k + 1; i < N; i++) { double sik = gsl_matrix_get (S, i, k); double sii = gsl_matrix_get (S, i, i); double new_sik = cosine * sik + sine * sii; double new_sii = -sine * sik + cosine * sii; gsl_matrix_set(S, i, k, new_sik); gsl_matrix_set(S, i, i, new_sii); } } } /* solve: S^T x = rhs in place */ gsl_blas_dtrsv(CblasLower, CblasTrans, CblasNonUnit, S, x); return GSL_SUCCESS; }