/* linalg/hermtd.c * * Copyright (C) 2001, 2007, 2009 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Factorise a hermitian matrix A into * * A = U T U' * * where U is unitary and T is real symmetric tridiagonal. Only the * diagonal and lower triangular part of A is referenced and modified. * * On exit, T is stored in the diagonal and first subdiagonal of * A. Since T is symmetric the upper diagonal is not stored. * * U is stored as a packed set of Householder transformations in the * lower triangular part of the input matrix below the first subdiagonal. * * The full matrix for U can be obtained as the product * * U = U_N ... U_2 U_1 * * where * * U_i = (I - tau_i * v_i * v_i') * * and where v_i is a Householder vector * * v_i = [0, ..., 0, 1, A(i+2,i), A(i+3,i), ... , A(N,i)] * * This storage scheme is the same as in LAPACK. See LAPACK's * chetd2.f for details. * * See Golub & Van Loan, "Matrix Computations" (3rd ed), Section 8.3 */ #include #include #include #include #include #include #include #include int gsl_linalg_hermtd_decomp (gsl_matrix_complex * A, gsl_vector_complex * tau) { if (A->size1 != A->size2) { GSL_ERROR ("hermitian tridiagonal decomposition requires square matrix", GSL_ENOTSQR); } else if (tau->size + 1 != A->size1) { GSL_ERROR ("size of tau must be (matrix size - 1)", GSL_EBADLEN); } else { const size_t N = A->size1; size_t i; const gsl_complex zero = gsl_complex_rect (0.0, 0.0); const gsl_complex one = gsl_complex_rect (1.0, 0.0); const gsl_complex neg_one = gsl_complex_rect (-1.0, 0.0); for (i = 0 ; i < N - 1; i++) { gsl_vector_complex_view c = gsl_matrix_complex_column (A, i); gsl_vector_complex_view v = gsl_vector_complex_subvector (&c.vector, i + 1, N - (i + 1)); gsl_complex tau_i = gsl_linalg_complex_householder_transform (&v.vector); /* Apply the transformation H^T A H to the remaining columns */ if ((i + 1) < (N - 1) && !(GSL_REAL(tau_i) == 0.0 && GSL_IMAG(tau_i) == 0.0)) { gsl_matrix_complex_view m = gsl_matrix_complex_submatrix (A, i + 1, i + 1, N - (i+1), N - (i+1)); gsl_complex ei = gsl_vector_complex_get(&v.vector, 0); gsl_vector_complex_view x = gsl_vector_complex_subvector (tau, i, N-(i+1)); gsl_vector_complex_set (&v.vector, 0, one); /* x = tau * A * v */ gsl_blas_zhemv (CblasLower, tau_i, &m.matrix, &v.vector, zero, &x.vector); /* w = x - (1/2) tau * (x' * v) * v */ { gsl_complex xv, txv, alpha; gsl_blas_zdotc(&x.vector, &v.vector, &xv); txv = gsl_complex_mul(tau_i, xv); alpha = gsl_complex_mul_real(txv, -0.5); gsl_blas_zaxpy(alpha, &v.vector, &x.vector); } /* apply the transformation A = A - v w' - w v' */ gsl_blas_zher2(CblasLower, neg_one, &v.vector, &x.vector, &m.matrix); gsl_vector_complex_set (&v.vector, 0, ei); } gsl_vector_complex_set (tau, i, tau_i); } return GSL_SUCCESS; } } /* Form the orthogonal matrix U from the packed QR matrix */ int gsl_linalg_hermtd_unpack (const gsl_matrix_complex * A, const gsl_vector_complex * tau, gsl_matrix_complex * U, gsl_vector * diag, gsl_vector * sdiag) { if (A->size1 != A->size2) { GSL_ERROR ("matrix A must be sqaure", GSL_ENOTSQR); } else if (tau->size + 1 != A->size1) { GSL_ERROR ("size of tau must be (matrix size - 1)", GSL_EBADLEN); } else if (U->size1 != A->size1 || U->size2 != A->size1) { GSL_ERROR ("size of U must match size of A", GSL_EBADLEN); } else if (diag->size != A->size1) { GSL_ERROR ("size of diagonal must match size of A", GSL_EBADLEN); } else if (sdiag->size + 1 != A->size1) { GSL_ERROR ("size of subdiagonal must be (matrix size - 1)", GSL_EBADLEN); } else { const size_t N = A->size1; gsl_vector_complex_const_view zd = gsl_matrix_complex_const_diagonal(A); gsl_vector_complex_const_view zsd = gsl_matrix_complex_const_subdiagonal(A, 1); gsl_vector_const_view d = gsl_vector_complex_const_real(&zd.vector); gsl_vector_const_view sd = gsl_vector_complex_const_real(&zsd.vector); gsl_vector_complex * work = gsl_vector_complex_alloc(N); size_t i; /* initialize U to the identity */ gsl_matrix_complex_set_identity (U); for (i = N - 1; i-- > 0;) { gsl_complex ti = gsl_vector_complex_get (tau, i); gsl_vector_complex_const_view h = gsl_matrix_complex_const_subcolumn (A, i, i + 1, N - i - 1); gsl_matrix_complex_view m = gsl_matrix_complex_submatrix (U, i + 1, i + 1, N - i - 1, N - i - 1); gsl_vector_complex_view w = gsl_vector_complex_subvector(work, 0, N - i - 1); gsl_linalg_complex_householder_left (ti, &h.vector, &m.matrix, &w.vector); } /* copy diagonal into diag */ gsl_vector_memcpy(diag, &d.vector); /* copy subdiagonal into sdiag */ gsl_vector_memcpy(sdiag, &sd.vector); gsl_vector_complex_free(work); return GSL_SUCCESS; } } int gsl_linalg_hermtd_unpack_T (const gsl_matrix_complex * A, gsl_vector * diag, gsl_vector * sdiag) { if (A->size1 != A->size2) { GSL_ERROR ("matrix A must be sqaure", GSL_ENOTSQR); } else if (diag->size != A->size1) { GSL_ERROR ("size of diagonal must match size of A", GSL_EBADLEN); } else if (sdiag->size + 1 != A->size1) { GSL_ERROR ("size of subdiagonal must be (matrix size - 1)", GSL_EBADLEN); } else { gsl_vector_complex_const_view zd = gsl_matrix_complex_const_diagonal(A); gsl_vector_complex_const_view zsd = gsl_matrix_complex_const_subdiagonal(A, 1); gsl_vector_const_view d = gsl_vector_complex_const_real(&zd.vector); gsl_vector_const_view sd = gsl_vector_complex_const_real(&zsd.vector); /* copy diagonal into diag */ gsl_vector_memcpy(diag, &d.vector); /* copy subdiagonal into sdiag */ gsl_vector_memcpy(sdiag, &sd.vector); return GSL_SUCCESS; } }