/* linalg/lq.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * Copyright (C) 2004 Joerg Wensch, modifications for LQ. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include "apply_givens.c" /* Note: The standard in numerical linear algebra is to solve A x = b * resp. ||A x - b||_2 -> min by QR-decompositions where x, b are * column vectors. * * When the matrix A has a large number of rows it is much more * efficient to work with the transposed matrix A^T and to solve the * system x^T A = b^T resp. ||x^T A - b^T||_2 -> min. This is caused * by the row-oriented format in which GSL stores matrices. Therefore * the QR-decomposition of A has to be replaced by a LQ decomposition * of A^T * * The purpose of this package is to provide the algorithms to compute * the LQ-decomposition and to solve the linear equations resp. least * squares problems. The dimensions N, M of the matrix are switched * because here A will probably be a transposed matrix. We write x^T, * b^T,... for vectors the comments to emphasize that they are row * vectors. * * It may even be useful to transpose your matrix explicitly (assumed * that there are no memory restrictions) because this takes O(M x N) * computing time where the decompostion takes O(M x N^2) computing * time. */ /* Factorise a general N x M matrix A into * * A = L Q * * where Q is orthogonal (M x M) and L is lower triangular (N x M). * * Q is stored as a packed set of Householder transformations in the * strict upper triangular part of the input matrix. * * R is stored in the diagonal and lower triangle of the input matrix. * * The full matrix for Q can be obtained as the product * * Q = Q_k .. Q_2 Q_1 * * where k = MIN(M,N) and * * Q_i = (I - tau_i * v_i * v_i') * * and where v_i is a Householder vector * * v_i = [1, m(i+1,i), m(i+2,i), ... , m(M,i)] * * This storage scheme is the same as in LAPACK. */ int gsl_linalg_LQ_decomp (gsl_matrix * A, gsl_vector * tau) { const size_t N = A->size1; const size_t M = A->size2; if (tau->size != GSL_MIN (M, N)) { GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN); } else { size_t i; for (i = 0; i < GSL_MIN (M, N); i++) { /* Compute the Householder transformation to reduce the j-th column of the matrix to a multiple of the j-th unit vector */ gsl_vector_view c = gsl_matrix_subrow (A, i, i, M - i); double tau_i = gsl_linalg_householder_transform (&(c.vector)); gsl_vector_set (tau, i, tau_i); /* Apply the transformation to the remaining columns and update the norms */ if (i + 1 < N) { gsl_matrix_view m = gsl_matrix_submatrix (A, i + 1, i, N - (i + 1), M - i ); gsl_linalg_householder_mh (tau_i, &(c.vector), &(m.matrix)); } } return GSL_SUCCESS; } } /* Solves the system x^T A = b^T using the LQ factorisation, * x^T L = b^T Q^T * * to obtain x. Based on SLATEC code. */ int gsl_linalg_LQ_solve_T (const gsl_matrix * LQ, const gsl_vector * tau, const gsl_vector * b, gsl_vector * x) { if (LQ->size1 != LQ->size2) { GSL_ERROR ("LQ matrix must be square", GSL_ENOTSQR); } else if (LQ->size2 != b->size) { GSL_ERROR ("matrix size must match b size", GSL_EBADLEN); } else if (LQ->size1 != x->size) { GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN); } else { /* Copy x <- b */ gsl_vector_memcpy (x, b); /* Solve for x */ gsl_linalg_LQ_svx_T (LQ, tau, x); return GSL_SUCCESS; } } /* Solves the system x^T A = b^T in place using the LQ factorisation, * * x^T L = b^T Q^T * * to obtain x. Based on SLATEC code. */ int gsl_linalg_LQ_svx_T (const gsl_matrix * LQ, const gsl_vector * tau, gsl_vector * x) { if (LQ->size1 != LQ->size2) { GSL_ERROR ("LQ matrix must be square", GSL_ENOTSQR); } else if (LQ->size1 != x->size) { GSL_ERROR ("matrix size must match x/rhs size", GSL_EBADLEN); } else { /* compute rhs = b Q^T */ gsl_linalg_LQ_vecQT (LQ, tau, x); /* Solve L^T x = rhs, storing x in-place */ gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, LQ, x); return GSL_SUCCESS; } } /* Find the least squares solution to the overdetermined system * * x^T A = b^T * * for M >= N using the LQ factorization A = L Q. */ int gsl_linalg_LQ_lssolve_T (const gsl_matrix * LQ, const gsl_vector * tau, const gsl_vector * b, gsl_vector * x, gsl_vector * residual) { const size_t N = LQ->size1; const size_t M = LQ->size2; if (M < N) { GSL_ERROR ("LQ matrix must have M>=N", GSL_EBADLEN); } else if (M != b->size) { GSL_ERROR ("matrix size must match b size", GSL_EBADLEN); } else if (N != x->size) { GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN); } else if (M != residual->size) { GSL_ERROR ("matrix size must match residual size", GSL_EBADLEN); } else { gsl_matrix_const_view L = gsl_matrix_const_submatrix (LQ, 0, 0, N, N); gsl_vector_view c = gsl_vector_subvector(residual, 0, N); gsl_vector_memcpy(residual, b); /* compute rhs = b^T Q^T */ gsl_linalg_LQ_vecQT (LQ, tau, residual); /* Solve x^T L = rhs */ gsl_vector_memcpy(x, &(c.vector)); gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, &(L.matrix), x); /* Compute residual = b^T - x^T A = (b^T Q^T - x^T L) Q */ gsl_vector_set_zero(&(c.vector)); gsl_linalg_LQ_vecQ(LQ, tau, residual); return GSL_SUCCESS; } } int gsl_linalg_LQ_Lsolve_T (const gsl_matrix * LQ, const gsl_vector * b, gsl_vector * x) { if (LQ->size1 != LQ->size2) { GSL_ERROR ("LQ matrix must be square", GSL_ENOTSQR); } else if (LQ->size1 != b->size) { GSL_ERROR ("matrix size must match b size", GSL_EBADLEN); } else if (LQ->size1 != x->size) { GSL_ERROR ("matrix size must match x size", GSL_EBADLEN); } else { /* Copy x <- b */ gsl_vector_memcpy (x, b); /* Solve R x = b, storing x in-place */ gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, LQ, x); return GSL_SUCCESS; } } int gsl_linalg_LQ_Lsvx_T (const gsl_matrix * LQ, gsl_vector * x) { if (LQ->size1 != LQ->size2) { GSL_ERROR ("LQ matrix must be square", GSL_ENOTSQR); } else if (LQ->size2 != x->size) { GSL_ERROR ("matrix size must match rhs size", GSL_EBADLEN); } else { /* Solve x^T L = b^T, storing x in-place */ gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, LQ, x); return GSL_SUCCESS; } } int gsl_linalg_L_solve_T (const gsl_matrix * L, const gsl_vector * b, gsl_vector * x) { if (L->size1 != L->size2) { GSL_ERROR ("R matrix must be square", GSL_ENOTSQR); } else if (L->size2 != b->size) { GSL_ERROR ("matrix size must match b size", GSL_EBADLEN); } else if (L->size1 != x->size) { GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN); } else { /* Copy x <- b */ gsl_vector_memcpy (x, b); /* Solve R x = b, storing x inplace in b */ gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, L, x); return GSL_SUCCESS; } } int gsl_linalg_LQ_vecQT (const gsl_matrix * LQ, const gsl_vector * tau, gsl_vector * v) { const size_t N = LQ->size1; const size_t M = LQ->size2; if (tau->size != GSL_MIN (M, N)) { GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN); } else if (v->size != M) { GSL_ERROR ("vector size must be M", GSL_EBADLEN); } else { size_t i; /* compute v Q^T */ for (i = 0; i < GSL_MIN (M, N); i++) { gsl_vector_const_view c = gsl_matrix_const_row (LQ, i); gsl_vector_const_view h = gsl_vector_const_subvector (&(c.vector), i, M - i); gsl_vector_view w = gsl_vector_subvector (v, i, M - i); double ti = gsl_vector_get (tau, i); gsl_linalg_householder_hv (ti, &(h.vector), &(w.vector)); } return GSL_SUCCESS; } } int gsl_linalg_LQ_vecQ (const gsl_matrix * LQ, const gsl_vector * tau, gsl_vector * v) { const size_t N = LQ->size1; const size_t M = LQ->size2; if (tau->size != GSL_MIN (M, N)) { GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN); } else if (v->size != M) { GSL_ERROR ("vector size must be M", GSL_EBADLEN); } else { size_t i; /* compute v Q^T */ for (i = GSL_MIN (M, N); i-- > 0;) { gsl_vector_const_view c = gsl_matrix_const_row (LQ, i); gsl_vector_const_view h = gsl_vector_const_subvector (&(c.vector), i, M - i); gsl_vector_view w = gsl_vector_subvector (v, i, M - i); double ti = gsl_vector_get (tau, i); gsl_linalg_householder_hv (ti, &(h.vector), &(w.vector)); } return GSL_SUCCESS; } } /* Form the orthogonal matrix Q from the packed LQ matrix */ int gsl_linalg_LQ_unpack (const gsl_matrix * LQ, const gsl_vector * tau, gsl_matrix * Q, gsl_matrix * L) { const size_t M = LQ->size1; const size_t N = LQ->size2; if (Q->size1 != N || Q->size2 != N) { GSL_ERROR ("Q matrix must be N x N", GSL_ENOTSQR); } else if (L->size1 != M || L->size2 != N) { GSL_ERROR ("L matrix must be N x M", GSL_EBADLEN); } else if (tau->size != GSL_MIN (M, N)) { GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN); } else { size_t i, j, l_border; /* Initialize Q to the identity */ gsl_matrix_set_identity (Q); for (i = GSL_MIN (M, N); i-- > 0;) { gsl_vector_const_view h = gsl_matrix_const_subrow (LQ, i, i, N - i); gsl_matrix_view m = gsl_matrix_submatrix (Q, i, i, N - i, N - i); double ti = gsl_vector_get (tau, i); gsl_linalg_householder_mh (ti, &h.vector, &m.matrix); } /* Form the lower triangular matrix L from a packed LQ matrix */ for (i = 0; i < M; i++) { l_border = GSL_MIN(i, N - 1); for (j = 0; j <= l_border ; j++) gsl_matrix_set (L, i, j, gsl_matrix_get (LQ, i, j)); for (j = l_border+1; j < N; j++) gsl_matrix_set (L, i, j, 0.0); } return GSL_SUCCESS; } } /* Update a LQ factorisation for A= L Q , A' = A + v u^T, * L' Q' = LQ + v u^T * = (L + v u^T Q^T) Q * = (L + v w^T) Q * * where w = Q u. * * Algorithm from Golub and Van Loan, "Matrix Computations", Section * 12.5 (Updating Matrix Factorizations, Rank-One Changes) */ int gsl_linalg_LQ_update (gsl_matrix * Q, gsl_matrix * L, const gsl_vector * v, gsl_vector * w) { const size_t N = L->size1; const size_t M = L->size2; if (Q->size1 != M || Q->size2 != M) { GSL_ERROR ("Q matrix must be N x N if L is M x N", GSL_ENOTSQR); } else if (w->size != M) { GSL_ERROR ("w must be length N if L is M x N", GSL_EBADLEN); } else if (v->size != N) { GSL_ERROR ("v must be length M if L is M x N", GSL_EBADLEN); } else { size_t j, k; double w0; /* Apply Given's rotations to reduce w to (|w|, 0, 0, ... , 0) J_1^T .... J_(n-1)^T w = +/- |w| e_1 simultaneously applied to L, H = J_1^T ... J^T_(n-1) L so that H is upper Hessenberg. (12.5.2) */ for (k = M - 1; k > 0; k--) /* loop from k = M-1 to 1 */ { double c, s; double wk = gsl_vector_get (w, k); double wkm1 = gsl_vector_get (w, k - 1); gsl_linalg_givens (wkm1, wk, &c, &s); gsl_linalg_givens_gv (w, k - 1, k, c, s); apply_givens_lq (M, N, Q, L, k - 1, k, c, s); } w0 = gsl_vector_get (w, 0); /* Add in v w^T (Equation 12.5.3) */ for (j = 0; j < N; j++) { double lj0 = gsl_matrix_get (L, j, 0); double vj = gsl_vector_get (v, j); gsl_matrix_set (L, j, 0, lj0 + w0 * vj); } /* Apply Givens transformations L' = G_(n-1)^T ... G_1^T H Equation 12.5.4 */ for (k = 1; k < GSL_MIN(M,N+1); k++) { double c, s; double diag = gsl_matrix_get (L, k - 1, k - 1); double offdiag = gsl_matrix_get (L, k - 1 , k); gsl_linalg_givens (diag, offdiag, &c, &s); apply_givens_lq (M, N, Q, L, k - 1, k, c, s); gsl_matrix_set (L, k - 1, k, 0.0); /* exact zero of G^T */ } return GSL_SUCCESS; } } int gsl_linalg_LQ_LQsolve (gsl_matrix * Q, gsl_matrix * L, const gsl_vector * b, gsl_vector * x) { const size_t N = L->size1; const size_t M = L->size2; if (M != N) { return GSL_ENOTSQR; } else if (Q->size1 != M || b->size != M || x->size != M) { return GSL_EBADLEN; } else { /* compute sol = b^T Q^T */ gsl_blas_dgemv (CblasNoTrans, 1.0, Q, b, 0.0, x); /* Solve x^T L = sol, storing x in-place */ gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, L, x); return GSL_SUCCESS; } } /* gsl_linalg_LQ_lssolve() Find the minimum norm least squares solution to the underdetermined system A x = b for M <= N using the LQ factorization A = L Q. */ int gsl_linalg_LQ_lssolve(const gsl_matrix * LQ, const gsl_vector * tau, const gsl_vector * b, gsl_vector * x, gsl_vector * residual) { const size_t M = LQ->size1; const size_t N = LQ->size2; if (M > N) { GSL_ERROR ("LQ matrix must have M<=N", GSL_EBADLEN); } else if (M != b->size) { GSL_ERROR ("matrix size must match b size", GSL_EBADLEN); } else if (N != x->size) { GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN); } else if (M != residual->size) { GSL_ERROR ("matrix size must match residual size", GSL_EBADLEN); } else { gsl_matrix_const_view L1 = gsl_matrix_const_submatrix (LQ, 0, 0, M, M); /* L_1 */ gsl_vector_view x1 = gsl_vector_subvector(x, 0, M); size_t i; gsl_vector_memcpy(&x1.vector, b); /* zero x(M+1:N) */ for (i = M; i < N; ++i) gsl_vector_set(x, i, 0.0); /* compute z = L_1^{-1} b */ gsl_blas_dtrsv(CblasLower, CblasNoTrans, CblasNonUnit, &L1.matrix, &x1.vector); /* residual = b - L_1 z */ gsl_vector_memcpy(residual, &x1.vector); gsl_blas_dtrmv(CblasLower, CblasNoTrans, CblasNonUnit, &L1.matrix, residual); gsl_vector_sub(residual, b); gsl_vector_scale(residual, -1.0); /* compute x = Q_1^T L_1^{-1} b = Q^T [ L_1^{-1} b ; 0 ] */ gsl_linalg_LQ_QTvec(LQ, tau, x); return GSL_SUCCESS; } } /* gsl_linalg_LQ_QTvec() Compute y = Q^T x Inputs: LQ - LQ matrix in packed format tau - tau vector v - on input, x; on output, y = Q^T x */ int gsl_linalg_LQ_QTvec(const gsl_matrix * LQ, const gsl_vector * tau, gsl_vector * v) { const size_t M = LQ->size1; const size_t N = LQ->size2; const size_t v_size = v->size; if (tau->size != GSL_MIN (M, N)) { GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN); } else if (v_size < GSL_MIN(M, N)) { GSL_ERROR ("vector size must be at least MIN(M,N)", GSL_EBADLEN); } else { size_t i; /* compute Q^T v */ for (i = GSL_MIN (M, N); i-- > 0;) { gsl_vector_const_view h = gsl_matrix_const_subrow (LQ, i, i, v_size - i); gsl_vector_view w = gsl_vector_subvector (v, i, v_size - i); double ti = gsl_vector_get (tau, i); gsl_linalg_householder_hv (ti, &(h.vector), &(w.vector)); } return GSL_SUCCESS; } }